Page 439 - Design and Operation of Heat Exchangers and their Networks
P. 439

422   Design and operation of heat exchangers and their networks


             Introducing the following dimensionless variables and parameters,

                                   C _         t  t 0          α A p + A f
            x ¼ x=L, y ¼ y=h, τ ¼       τ, θ ¼       , NTU ¼             ,
                                 C p + C f    t ref  t 0           C _
                                                  C
                        C f          A f                     A c, f λ f
                  ζ ¼        , ξ ¼        , B ¼        , K f ¼
                                                               hC _
                      C p + C f    A p + A f   C p + C f
          we can express the governing equation system in dimensionless form and
          then apply the Laplace transform to it, which yields
                             dθ                    ð 1
                              e
                                                     θ f dy θ
                       sBθ +    ¼ NTU 1 ξÞθ p + ξ    e     e         (8.131)
                                        ð
                         e
                                              e
                             dx                     0


                                                       e
                                                      dθ f
                                          e e
                         e
                   s 1 ζÞθ p ¼ 1 ξð  ÞNTU θ  θ p +2K f               (8.132)
                   ð
                                                       dy
                                                          y¼0
                                               0
                                              e
                                           e
                                   x ¼ 0 : θ ¼ θ sðÞ                 (8.133)

                                      2 e
                                     d θ f
                                                  e e
                              e
                            sζθ f ¼ K f  + ξNTU θ  θ f               (8.134)
                                     dy 2
                                               e
                                                   e
                                y ¼ 0 andy ¼ 1 : θ f ¼ θ p           (8.135)
             In the Laplace plane, the fin temperature can be solved alone by taking θ
          and θ w as parameters, which yields

                       ξNTU                                      ξNTU
           θ f ¼ θ w
           e    e              θ  cosh γl   tanh γ=2ð  Þsinh γl  +       θ
                               e
                                                                         e
                     sζ + ξNTU                                  sζ + ξNTU
                                                                     (8.136)
          from which we further obtain
                          ð 1
                                                 ξNTU
                                                          θ
                            e       e         Þ           e          (8.137)
                            θ f dy ¼ η θ p +1 ηð
                                    f         f
                           0                    sζ + ξNTU

                                   h                       i
                        e
                       dθ f          sζ + ξNTUÞθ p  ξNTUθ
                   2K f      ¼ η ð             e          e          (8.138)
                                  f
                       dy
                          y¼0
          where the fin efficiency η f and complex eigenvalue γ are
                                 η ¼ tanh γ=2ð  Þ= γ=2Þ              (8.139)
                                               ð
                                  f
                                      r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        sζ + ξNTU
                                   γ ¼                               (8.140)
                                            K f
   434   435   436   437   438   439   440   441   442   443   444