Page 470 - Design and Operation of Heat Exchangers and their Networks
P. 470

Optimal control process of heat exchanger networks  453


                                   s:t: hx, c b , c e,ini , uÞ ¼ 0
                                        ð
                                       gx, c b , c e,ini , uÞ   0
                                        ð
              where c b,ini is the initial bypass fraction, c e,ini the initial valve opening for the
              economic operation, c b the new bypass fraction, and w the weighting factor.
                 Then, the economic optimization described as follows is solved:

                                     min C x, c b , c e , uð  Þ ¼
                                    c e 2R c e
                         h                                        i
                          X                     X
                    min a     Q HU x, c b , c e , uÞ + b  Q CU x, c b , c e , uÞ  (9.48)
                                                       ð
                                  ð
                    c e 2R ce
                                  s:t: zx, c b , c e , uÞ z tar ¼ 0
                                       ð
                                        hx, c b , c e , uÞ ¼ 0
                                         ð
                                        gx, c b , c e , uð  Þ   0
                 In the one-step coordination control, the two controlling variables are
              manipulated simultaneously by solving the dynamic optimization problem
              with an optimization algorithm with pattern search (Hooke and Jeeves,
              1961) combining a penalty function for the constraints. According to Sun
              et al. (2018), we can express the optimization problem as

                                   h
                            min     C k x, c b , c e , uð  Þ + wΔC k x, c b , c e , uÞ
                                                         ð
                        c b 2R c b  ,c e 2R c e
                                   X
                                 +     φ h i x, c b , c e , u, τ k +1 Þj
                                        j
                                          ð
                                        i
                                     i
                               X                             	 i
                             +     φ min g j x, c b , c e , u, τ k +1 Þ,0  (9.49)
                                           ð
                                    j
                                 j
              where φ i and φ j are the penalty factors for different constraints and w is the
              weighting factor. The utility costs C k and ΔC k are calculated with
              Eqs. (9.50)–(9.53):
                                             ð
                                        1     τ k +1 X
                                                 h
                     C k x, c b , c e , uð  Þ ¼   a   Q HU x, c b , c e , u, τÞ
                                                          ð
                                    τ k +1  τ k τ k
                                                        i
                                    X
                                 + b   Q CU x, c b , c e , u, τð  Þ dτ   (9.50)
                                                              ð
                                           ð
                    ΔC k x, c b , c e , uð  Þ ¼ C k,max x, c b , c e , uÞ C k,min x, uÞ  (9.51)
                                                h X
                      C k,max x, c b , c e , uð  Þ ¼ max  a  Q HU x, c b , c e ,u, τð  _  Þ
                                         τ2 τ k, ∞Þ
                                           ½
                                                         i
                                     X
                                  + b   Q CU x, c b , c e ,u, τð  _  Þ   (9.52)
   465   466   467   468   469   470   471   472   473   474   475