Page 474 - Design and Operation of Heat Exchangers and their Networks
P. 474

APPENDIX

              Source codes used in the book





              Example 2.1 Sizing an electrically heated tube
              (MatLab code)

              % Example 2.1 Sizing an electrically heated tube
              % The compressed air at 1.5 bar with a normal volumetric flow rate of
              % 1.2 Nm3/h shall be heated from 20°Cto80°C by the heating wire uniformly
              % wrapped around the tube as it flows through the tube. The tube outside
              % diameter is 25 mm, tube wall thickness is 2 mm, and thermal conductivity
              % of the tube material is 15 W/mK. The tube temperature shall not exceed
              % 200°C. Determine the length of the tube heating section.

              d_o = 0.025; % outside diameter, m
              d_i = 0.021; % inside diamter, m
              lambda_w = 15; % tube thermal conductivity, W/mK
              V_N = 1.2; % normal volumetric flow rate, Nm3/h
              p_N = 1.01325; % normal pressure, bar
              t_N = 0; % normal temperature, °C
              t_in = 20; %inlet temperature, °C
              p_in = 1.5; % inlet pressure, bar
              t_out = 80; % outlet temperature, °C
              t_max = 200; % maximum allowed temperature, °C
              t_m = (t_in + t_out) / 2; % mean temperature, °C
              rho_N = refpropm('D','T', t_N + 273.15, 'P', p_N ∗ 100, 'air');
              % density at normal condition, kg/m3
              [mu, lambda, cp] = refpropm('VLC','T', t_m + 273.15, ...
                  'P', p_in ∗ 100, 'air');
              % viscosity, sPa; thermal conductivity, W/mK; isobaric heat capacity, J/kgK
              Pr = mu ∗ cp / lambda; % Prandtl number
              m = rho_N ∗ V_N / 3600; % mass flow rate, kg/s
              G=m ∗ 4/pi / d_i  ^  2; % mass velocity, kg/m2s
              Re = G ∗ d_i / mu; % Reynolds number
              Q=m ∗ cp ∗ (t_out - t_in); % heat load, W
              Nu_H = 4.36; % Nusselt number for constant wall heat flux
              alpha_H = Nu_H ∗ lambda / d_i; % heat transfer coefficient, W/m2K


                                                                           457
   469   470   471   472   473   474   475   476   477   478   479