Page 478 - Design and Operation of Heat Exchangers and their Networks
P. 478

Appendix  461


              % density, kg/m3; viscosity, sPa; thermal conductivity, W/mK; isobaric heat
              % capacity, J/kgK
              Pr = mu ∗ cp / lambda; % Prandtl number
              Re = G ∗ dh / mu; % Reynolds number
              Nu_H1 = 8.235 ∗ (((((-0.1861 ∗ gamma + 1.0578) ∗ gamma - 2.4765) ...
                 ∗ gamma + 3.0853) ∗ gamma - 2.0421) ∗ gamma + 1);
              % Nusselt number for constant wall heat flux
              alpha = Nu_H1 ∗ lambda / dh; % heat transfer coefficient, W/m2K
              m_1 = sqrt(2 ∗ alpha / lambda_f / delta_f );
              l_f_1 = h_fs;
              m_2 = sqrt(alpha / lambda_f / delta);
              l_f_2 = s_fs / 2;
              eta_f = (m_1 ∗ sinh(m_1 ∗ l_f_1) ∗ cosh(m_2 ∗ l_f_2) ...
                   + m_2 ∗ cosh(m_1 ∗ l_f_1) ∗ sinh(m_2 ∗ l_f_2)) / m_1 / (l_f_1 + l_f_2) ...
                   / (m_1 ∗ cosh(m_1 ∗ l_f_1) ∗ cosh(m_2 ∗ l_f_2) ...
                   + m_2 ∗ sinh(m_1 ∗ l_f_1) ∗ sinh(m_2 ∗ l_f_2)); % fin efficiency
              beta = (2 ∗ h_fs + s_fs) / (2 ∗ (h_fs + s_fs));
              % ratio of secondary heat transfer area to primary heat transfer area
              eta_0 =1-(1- eta_f ) ∗ beta; % overall fin efficiency
              k=1/(1 / alpha / eta_0 + delta / lambda_f );
              % overall heat transfer coefficient, W/m2K
              A=2 ∗ N ∗ (h_fs + s_fs) ∗ L; % total heat transfer area, m2
              delta_t =Q/k /A;% temperature difference, K
              t_max = t_out + delta_t;
              fprintf('t_max = %f°C\n', t_max);



              Example 2.4 Sizing a counterflow heat exchanger
              (MatLab code)

              % Example 2.4 Sizing a counterflow heat exchanger
              % Consider a counterflow shell-and-tube heat exchanger with one shell pass
              % and one tube pass. Hot water enters the tube at 100°C and leaves at 80°C.
              % In the shellside, cold water is heated from 20°Cto 70°C. The heat duty
              % is expected to be 350 kW. There are totally 53 tubes with the inner
              % diameter of 16 mm and wall thickness of 1 mm. The thermal conductivity of
              % the tube wall is 40 W/mK. The shellside heat transfer coefficient can be
              % established as 1500 W/m2K. Calculate the tube length of the heat
              % exchanger.
   473   474   475   476   477   478   479   480   481   482   483