Page 476 - Design and Operation of Heat Exchangers and their Networks
P. 476

Appendix  459


              % density at normal condition, kg/m3
              [mu, lambda, cp] = refpropm('VLC','T', t_m + 273.15, ...
                  'P', p_in ∗ 100, 'air');
              % viscosity, sPa; thermal conductivity, W/mK; isobaric heat capacity, J/kgK
              Pr = mu ∗ cp / lambda; % Prandtl number
              m = rho_N ∗ V_N / 3600; % mass flow rate, kg/s
              G=m ∗ 4/pi / d_i  ^  2; % mass velocity, kg/m2s
              Re = G ∗ d_i / mu; % Reynolds number
              Q=m ∗ cp ∗ (t_out - t_in); % heat load, W
              Nu_H = 4.36; % Nusselt number for constant wall heat flux
              alpha_H = Nu_H ∗ lambda / d_i; % heat transfer coefficient, W/m2K
              k=1/(1 / alpha_H + d_i ∗ log(d_o / d_i) / 2 / lambda_w);
              % overall heat transfer coefficient, W/m2K
              delta_t = t_max - t_out; % temperature difference at the tube outlet, K
              A=Q/k / delta_t; % heat transfer area, m2
              %L=A/ pi / d_i; % tube length, m
              L = 0.57; % initial value of tube length, m
              c = 0.05; % uncertainty in the calculation of the heat transfer coefficient
              Re_Pr_d_L = Re ∗ Pr ∗ d_i / L; % initial value of RePrd/L
              for iter = 1 : 1000
                   Nu_x_H =(4.354  ^  3 + (1.302 ∗ Re_Pr_d_L  ^  (1 / 3) - 1)  ^  3 ...
                      + (0.462 ∗ Re_Pr_d_L  ^  0.5 / Pr  ^  (1 / 6))  ^  3)  ^  (1 / 3);
                   % local Nusselt number at tube outlet for constant wall heat flux
                   alpha_x_H = Nu_x_H ∗ lambda / d_i;
                   % local heat transfer coefficient at tube outlet, W/m2K
                   k=1/(1/ (1 -c)/ alpha_x_H ...
                        + d_i ∗ log(d_o / d_i) / 2 / lambda_w);
                   % local overall heat transfer coefficient at tube outlet, W/m2K
                   A=Q/k/ delta_t; % heat transfer area, m2
                   L=A/pi/ d_i; % tube length, m
                   s=Re ∗ Pr ∗ d_i / L - Re_Pr_d_L; % deviation in RePrd/L
                   Re_Pr_d_L = Re_Pr_d_L + s;
                   if (abs(s) < 1E-6)
                        break;
                   end
              end
              fprintf('L = %fm\n', L);
   471   472   473   474   475   476   477   478   479   480   481