Page 471 - Design and Operation of Heat Exchangers and their Networks
P. 471

454   Design and operation of heat exchangers and their networks


                                          n X
                       ð
                  C k,min x, uÞ ¼  min     a   Q HU x, c b , c e , u τ k +1 Þ½  ð  Š
                               c b 2R c b  ,c e 2R c e
                                X                      o
                             + b   Q CU x, c b , c e , u τ k +1 Þ½  ð  Š  (9.53)
          in which

                                      u τ ðÞ,
                              _                τ   τ k +1
                              u τ ðÞ ¼                                (9.54)
                                       ð
                                      u τ k +1 Þ, τ > τ k +1
             The time step τ k represents the control horizontal, 0¼τ 0 <τ 1 <τ 2
          <…<τ k <τ k+1 . C k is the mean utility cost in the kth time interval [τ k ,
          τ k+1 ], C k,min is the steady-state minimum utility cost under the optimal
          controlling variables c b and c e against the disturbance u at τ k+1 , and C k,
          max is the possible maximum utility cost in the time range of [τ k , ∞) due
          to the disturbance expressed by Eq. (9.54).

          References

          Aguilera, N., Marchetti, J.L., 1998. Optimizing and controlling the operation of heat
             exchanger networks. AICHE J. 44 (5), 1090–1104.
          Boyaci, C., Uzturk, D., Konukman, A.E.S., Akman, U., 1996. Dynamics and optimal
             control of flexible heat-exchanger networks. Comput. Chem. Eng. 20 (Suppl), 775–780.
          Calandranis, J., Stephanopoulos, G., 1986. Stractural operability analysis of heat exchanger
             networks. Chem. Eng. Res. Des. 64 (5), 347–364.
          Clarke, D.W., Mohtadi, C., Tuffs, P.S., 1987a. Generalized predictive control—Part I.
             The basic algorithm. Automatica 23 (2), 137–148.
          Clarke, D.W., Mohtadi, C., Tuffs, P.S., 1987b. Generalized predictive control—Part II.
             Extensions and interpretations. Automatica 23 (2), 149–160.
          Ellis, M., Durand, H., Christofides, P.D., 2014. A tutorial review of economic model
             predictive control methods. J. Process Control 24 (8), 1156–1178.
          Floudas, C.A., Grossmann, I.E., 1986. Synthesis of flexible heat exchanger networks for
             multiperiod operation. Comput. Chem. Eng. 10, 153–168.
          Floudas, C.A., Grossmann, I.E., 1987. Synthesis of flexible heat exchanger networks with
             uncertain flowrates and temperatures. Comput. Chem. Eng. 11 (4), 319–336.
          Galli, M.R., Cerda, J., 1991. Synthesis of flexible heat exchanger networks—III.
             Temperature and flowrate variations. Comput. Chem. Eng. 15 (1), 7–24.
          Garriga, J.L., Soroush, M., 2010. Model predictive control tuning methods: a review. Ind.
             Eng. Chem. Res. 49 (8), 3505–3515.
          Georgiou, A., Floudas, C.A., 1989. Optimization model for generic rank determination of
             structural matrices. Int. J. Control. 49 (5), 1633–1644.
          Glemmestad, B., Skogestad, S., Gundersen, T., 1997. On-line optimization and choice of
             optimization variables for control of heat exchanger networks. Comput. Chem. Eng.
             21 (Suppl), 379–384.
          Grossmann, I.E., Halemane, K.P., Swaney, R.E., 1983. Optimization strategies for flexible
             chemical process. Comput. Chem. Eng. 7 (4), 439–462.
          Guan, X., Cui, G., Li, M., Luo, X., 2004. Study on model predictive control of plate-fin heat
             exchangers. In: Sunden, B., Brebbia, C.A., Mendes, A.C. (Eds.), Advanced Computa-
             tional Methods in Heat Transfer VIII. WIT Press, Southampton, pp. 223–231.
   466   467   468   469   470   471   472   473   474   475   476