Page 326 - Design of Reinforced Masonry Structures
P. 326

5.46                       CHAPTER FIVE

         TABLE E5.11  Calculations for Values of Axial Load and Bending Moment for the Interaction
         Diagram for Column in Example 5.11 (Excel spreadsheet)
                                         ′ f    C m    C S    T   fP n    fM n
                                         s
         Point  c in.    ′ ε     ε      ksi  kips  kips  kips  kips  k-in.
                                  T
                         s
           1     –    0.00207  0.00207                        417.6  –
           2   23.625  0.00210  −0.00040  −11.7  472.5  71.4  −14.0  398.2  1412
           3   19.825  0.00202  0.00000  0.1  396.0  68.7  0.1  331.6  1877
           4   17.0   0.00194  0.00042  12.0  340.0  66.0  14.5  279.4  2108
           5   14.0   0.00182  0.00104  30.2  280.0  61.8  36.2  218.1  2267
           6   10.8   0.00162  0.00208  60.0  216.6  54.9  72.0  142.4  2368
           7   10.0   0.00155  0.00246  60.0  200.0  52.3  72.0  128.7  2298
           8    8.0   0.00131  0.00370  60.0  160.0  44.1  72.0  94.3  2073
           9    6.5   0.00104  0.00513  60.0  130.0  34.5  72.0  66.0  1843
          10    5.0   0.00060  0.00741  60.0  100.0  19.3  72.0  33.7  1540
          11    4.0   0.00013  0.00989  60.0  80.0  2.8  72.0  7.7  1274
          12    3.67  −0.00009  0.01100  60.0  73.4  −3.1  72.0  −1.2  1181

         strains, which might be compressive or tensile depending on the position of the neutral axis
         in various cases, can be calculated from strain distribution diagrams as follows:
           Case 1: Zero strain on the tension face of the column, c = h (Point 2 on the interaction
           diagram).
           Figure 5.13 shows the column cross section and the strain distribution and force dia-
           grams corresponding to zero strain on the tension face of the column. Strain is tension
           reinforcement (e ) in this case would be compressive, which can be calculated from
                       T
           similar triangles of strain distribution diagram:
                                  ε   cd   ( )
                                       −
                                              d
                                   T  =   = 1 −
                                  ε    c      c
                                   m
           whence
                               T ( )
                                     d
                                                   )
                              ε = 1 −  ε (compressive                (5.41)
                                     c  m
                        b                             0.8fʹ m
                                      ε m = 0.0025
                                              εʹ s            dʹ
                                                              C s  a/2
                                                 a                C m
             h                    c = h  d

                                        ε T
                                                         C T
                                     ε m  = 0
             FIGURE 5.13  Strain distribution and force diagrams for the case of zero strain on the ten-
             sion face of column.
   321   322   323   324   325   326   327   328   329   330   331