Page 540 - Design of Reinforced Masonry Structures
P. 540

7.102                     CHAPTER SEVEN

                         17.5''        6.5''            24''


                  4''                                                  e s3
                                                  e s2
             e m = 0.0025  e s1



            FIGURE E7.17C  Strain distribution for Trial 3 iteration.


             Bar 1:

                     f s ′= ε s1 E s  = (0 00193.  )(29 000,  ) = 55 97.  ksi (compression)
                    C = ′′= 044 (5597 ) = 2463.  kips (compression)
                                  .
                             .
                        A f
                     s
                         s s
             Bar 2:
                                0 00093 29 000 =
                      f = ε  E = (.   ) (  ,  )  26 97 ksi (tension)
                                                .
                       s2  s2  s
                Tensile force in Bar 2 = A f = 0.44(26.97) = 11.87 kips (tension)
                                  s s2
             Compression force in masonry:
                         C = 0.80  ′ fat = 0.80 (2.0)(14)(7.625) = 170.80 kips
                                m
                 Total compression force = C + C = 170.80 + 24.63 = 195.43 kips.
                                         s
                      Total tensile force = 11.87 + 3.53(60) = 223.67 kips > (C + C )
                                                                 s
             Check equilibrium: ΣF = 0
                              y
                     C + C  – T = 170.80 + 24.63 – 223.67 = -28.24 kips ≠ 0
                         s
           Therefore,               14 in. < a < 18 in.

             Trial 4: Assume a = 16 in.
                                c =  a  =  16  = 20in.
                                         .
                                    .
                                   080  080
             Calculate forces in masonry and reinforcing bars as before. The strain distribution
           diagram is shown in Fig. E7.17D
                          ⎛ 16 ⎞
                               0 0025 =
                      ε = ⎜  ⎟ (.   )  0 0020 <  ε =  0 00207 ( f  < f )
                                       .
                                                 .
                       s1  ⎝ 20 ⎠             y         s  y
                             0 00205 =
                      ε =  4  (.   )  0 0005 <  ε =  0 00207 ( f  < f )
                                      .
                                                .
                       s2                    y         s  y
                          20
   535   536   537   538   539   540   541   542   543   544   545