Page 55 - Determinants and Their Applications in Mathematical Physics
P. 55

40   3. Intermediate Determinant Theory

          as a block in the top left-hand corner. Denote the result by (adj A) . Then,
                                                                   ∗
                                        ∗
                                  (adj A) = σ adj A,
          where
                  σ =(−1) (p 1 −1)+(p 2 −2)+···+(p r −r)+(q 1 −1)+(q 2 −2)+···+(q r −r)
                   =(−1)  (p 1 +p 2 +···+p r )+(q 1 +q 2 +···+q r ) .
                                      ∗
          Now replace each A ij in (adj A) by a ij , transpose, and denote the result
                ∗
          by |a ij | . Then,
                                     ∗
                                 |a ij | = σ|a ij | = σA.
          Raise the order of J from r to n in a manner similar to that shown in
          (3.6.3), augmenting the first r columns until they are identical with the
          first r columns of (adj A) , denote the result by J , and form the product
                                ∗
                                                     ∗
          |a ij | J . The theorem then appears.
               ∗
             ∗
          Illustration. Let (n, r)=(4, 2) and let

                                             A 22
                               J = J 23,24 =     A 32    .
                                           A 24  A 34

          Then

                                      A 22  A 32  A 12  A 42

                                 ∗    A 24  A 34  A 14  A 44
                           (adj A) =
                                      A 21  A 31  A 11  A 41

                                     A 23  A 33  A 13  A 43
                                  = σ adj A,
          where
                                        2+3+2+4
                                σ =(−1)        = −1
          and

                                      a 22  a 24  a 21  a 23

                                ∗     a 32  a 34  a 31  a 33

                             |a ij | =
                                      a 12  a 14  a 11  a 13

                                     a 42  a 44  a 41  a 43
                                  = σ|a ij | = σA.
          The first two columns of J  ∗  are identical with the first two columns of
                ∗
          (adj A) :

                                        A 22  A 32

                                  ∗     A 24  A 34     ,

                                                 1
                             J = J =
                                        A 21  A 31
                                                    1
                                       A 23  A 33
                               σAJ = |a ij | J  ∗
                                         ∗
   50   51   52   53   54   55   56   57   58   59   60