Page 57 - Determinants and Their Applications in Mathematical Physics
P. 57

42   3. Intermediate Determinant Theory

                                  = −       δ rp δ sq A A rj
                                                   is
                                       r  s
                                  = −A A  pj
                                       iq
                                      1
                                  = −   [A iq A pj ].                (3.6.7)
                                      A 2
          Hence,


                                   A ij  A iq    = AA ip,jq ,        (3.6.8)
                                   A pj  A pq
          which, when the parameter n is restored, is equivalent to (3.6.4). The
          formula given in the theorem follows by scaling the cofactors.

          Theorem 3.5.

                              A ij  A iq  A  iv


                                A pj  A pq  A  pv    = A ipu,jqv ,

                                A uj  A uq  A  uv
          where the cofactors are scaled.
          Proof. From (3.2.4) and Theorem 3.4,
                                 2
                                ∂ A    = A pu,qv
                              ∂a pq ∂a uv
                                       = AA pu,qv

                                            A pq  A
                                                  pv
                                       = A             .             (3.6.9)
                                            A uq  A
                                                  uv
          Hence, referring to (3.6.7) and the formula for the derivative of a
          determinant (Section 2.3.7),
                    3
                   ∂ A
               ∂a ij ∂a pq ∂a uv
                                          pq                    pv
                                         ∂A   A         A pq  ∂A
                         A pq  A                pv
                    ∂A          pv       ∂a ij
                 =                        uq                  ∂a ij
                         A uq  A  uv    + A    ∂A  uv    + A    uq  ∂A  uv
                                              A          A

                                         ∂a ij                ∂a ij
                    ∂a ij

                        A pq  A           A pj  A           A pq  A
                               pv               pv                pj
                                    − AA  iq          − AA  iv
                        A uq  A  uv        A uj  A  uv        A uq  A  uj
                 = A ij

                    1
                 =            A pq  A pv       A pj  A pv
                    A 2  A ij    A uq  A uv     − A iq    A uj  A uv


                             A pj  A pq

                     + A iv
                                 A uq
                           A uj


                    1    A ij  A iq  A iv
                 =                      .                           (3.6.10)
                    A 2    A pj  A pq  A pv
                          A uj  A uq  A uv
   52   53   54   55   56   57   58   59   60   61   62