Page 61 - Determinants and Their Applications in Mathematical Physics
P. 61

46   3. Intermediate Determinant Theory

          The proof is completed by applying (C) and (A 1 ) with n → n−1. Theorem
          3.7 is applied in Section 6.6 on the Matsukidaira–Satsuma equations.
          Theorem 3.8.
                                 (n+1)      (n+1)
                                A     H n = A    H r ,
                                 n+1,r      n+1,n
          where

                               (n−1)
                                     A
                                       (n+1)
                              A rr              (n+1)  (n)
                                       rj    − A    A       .
                               (n−1)   (n+1)    nj    r,n−1;rn
                       H j =
                               A     A
                               n−1,r   n−1,j
          Proof. Return to (3.6.18), multiply by A n+1 /A n and apply the Jacobi
          identity:

                       (n+1)                           (n+1)
                                               (n+1)
                               (n+1)    (n−1)   A     A
              A  (n−1) A rr  A rn     − A      n−1,r   n−1,n
                       (n+1)

                     A       A  (n+1)    rr      A (n+1)  A (n+1)
               n−1,r
                       n+1,r  n+1,n
                                               n+1,r   n+1,n
                                (n+1)

                      (n)               (n+1)
                  + A           A nr  A nn     =0,
                                (n+1)
                              A       A  (n+1)
                      r,n−1;rn
                                n+1,r   n+1,n
               (n+1)     (n−1)  (n+1)  (n−1)  (n+1)  (n+1)  (n)
              A      A    A      − A     A     − A     A
               n+1,r  rr    n−1,n   n−1,r  rn      nn   r,n−1;rn
                     (n+1)     (n−1)  (n+1)  (n+1)  (n−1)  (n)  (n+1)
                = A       A     A     − A     A     − A       A      ,
                     n+1,n  rr   n−1,r    rr    n−1,r   r,n−1;rn  nr
                        (n−1)

               (n+1)            (n+1)    (n+1)  (n)
              A         A rr  A rn     − A   A
                        (n−1)
                      A       A  (n+1)    nn   r,n−1;rn
               n+1,r
                        n−1,r   n−1,n
                             (n−1)

                     (n+1)           (n+1)    (n+1)  (n)
                = A           A rr  A rr     − A   A        .
                             (n−1)
                            A      A
                     n+1,n           (n+1)    nr    r,n−1;rn
                             n−1,r   n−1,r
          The theorem follows.
          Exercise. Prove that
               (n)  (n)        (n)
               A   A     ...  A       A  (n+1)
               i 1 j 1  j 1 j 2  i 1 j r−1  i 1 ,n+1
              (n)   (n)        (n)     (n+1)
              A    A     ...  A       A           r−1  (n+1)

              i 2 j 1  i 2 j 2  i 2 j r−1  i 2 ,n+1   = A  A            .
                                                       i 1 i 2 ...i r ;j 1 j 2 ...j r−1 ,n+1
                                                  n
              ...................................
               (n)  (n)        (n)     (n+1)
              A    A     ... A        A
              i r j 1  i r j 2  i r j r−1  i r ,n+1 r
          When r = 2, this identity degenerates into Variant (A). Generalize Variant
          (B) in a similar manner.
          3.7   Bordered Determinants
          3.7.1 Basic Formulas; The Cauchy Expansion
          Let
                               A n = |a ij | n


                                  = C 1 C 2 C 3 ··· C n
                                                    n
   56   57   58   59   60   61   62   63   64   65   66