Page 59 - Determinants and Their Applications in Mathematical Physics
P. 59
44 3. Intermediate Determinant Theory
Proof. Denote the left side of variant (A) by E. Then, applying the
Jacobi identity,
(n) (n+1)
A A (n+1) A A (n+1)
ip i,n+1 ip i,n+1
(n) (n+1) − A n (n+1) (n+1)
A n+1 E = A n+1
A A A A
j,n+1 j,n+1
jp jp
(n+1) (n+1)
= A F j − A F i , (3.6.13)
i,n+1 j,n+1
where
(n+1) (n)
F i = A n A − A n+1 A
ip ip
(n+1)
A A (n+1) (n) (n+1) (n+1)
ip i,n+1 − A n+1 A + A A
= (n+1) (n+1) ip i,n+1 n+1,p
A A n+1,n+1
n+1,p
(n+1) (n+1)
= A i,n+1 A n+1,p .
Hence,
(n+1) (n+1) (n+1) (n+1) (n+1)
A n+1 E = A A − A A A
i,n+1 j,n+1 j,n+1 i,n+1 n+1,p
=0. (3.6.14)
The result follows and variant (B) is proved in a similar manner. Variant
(A) appears in Section 4.8.5 on Turanians and is applied in Section 6.5.1
on Toda equations.
The proof of (C) applies a particular case of (A) and the Jacobi identity.
In (A), put (i, j, p)=(r, n, r):
(n)
A
(n+1)
r,n+1 − A n A =0. (A 1 )
A rr (n+1)
(n) (n+1)
rn;r,n+1
A nr A n,n+1
Denote the left side of (C) by P
(n) (n+1)
(n)
(n+1) (n+1) A rr A
− A r,n+1
A rr
A rr
(n) (n) (n+1)
A
n+1,r
A n P = A n
(n+1)
A nr n,n+1
A nr
A nr
(n) (n+1) (n+1)
A
A rr A rr r,n+1
(n) (n+1)
A
(n+1)
n,n+1
= A nr
A nr
(n+1) (n+1)
• A A n+1,n+1
n+1,r
= A (n) G n − A (n) G r , (3.6.15)
rr nr
where
(n+1)
A A (n+1)
ir i,n+1
(n+1) (n+1)
G i =
A A
n+1,n+1
n+1,r
(n+1)
= A n+1 A . (3.6.16)
i,n+1;r,n+1
Hence,
(n) (n+1) (n) (n+1)
A n P = A n+1 A A n,n+1;r,n+1 − A A r,n+1;r,n+1 .
rr nr