Page 59 - Determinants and Their Applications in Mathematical Physics
P. 59

44   3. Intermediate Determinant Theory

          Proof. Denote the left side of variant (A) by E. Then, applying the
          Jacobi identity,

                                  (n)                (n+1)
                                 A    A  (n+1)      A      A  (n+1)


                                  ip    i,n+1        ip      i,n+1
                                  (n)   (n+1)    − A n    (n+1)  (n+1)
                  A n+1 E = A n+1
                                A     A            A       A
                                        j,n+1                j,n+1
                                  jp                 jp
                            (n+1)     (n+1)
                        = A     F j − A    F i ,                    (3.6.13)
                            i,n+1     j,n+1
          where
                          (n+1)        (n)
                 F i = A n A  − A n+1 A
                          ip           ip
                      
   (n+1)
                         A       A (n+1)         (n)     (n+1)  (n+1)

                         ip       i,n+1     − A n+1 A  + A   A
                   =     (n+1)   (n+1)           ip      i,n+1  n+1,p
                          A     A n+1,n+1
                         n+1,p
                       (n+1)  (n+1)
                   = A i,n+1 A n+1,p .
          Hence,
                                 (n+1)  (n+1)  (n+1)  (n+1)    (n+1)
                     A n+1 E = A    A      − A    A      A
                                i,n+1  j,n+1  j,n+1  i,n+1  n+1,p
                            =0.                                     (3.6.14)
          The result follows and variant (B) is proved in a similar manner. Variant
          (A) appears in Section 4.8.5 on Turanians and is applied in Section 6.5.1
          on Toda equations.
            The proof of (C) applies a particular case of (A) and the Jacobi identity.
          In (A), put (i, j, p)=(r, n, r):

                             (n)
                                 A
                                   (n+1)
                                   r,n+1     − A n A  =0.             (A 1 )
                            A rr               (n+1)
                             (n)   (n+1)
                                               rn;r,n+1
                             A nr  A n,n+1
          Denote the left side of (C) by P

                               (n)                         (n+1)
                                                     (n)
                                     (n+1)    (n+1)   A rr  A
                                           − A             r,n+1
                                   A rr
                              A rr
                               (n)                    (n)  (n+1)

                                                          A
                                              n+1,r
                   A n P = A n
                                     (n+1)
                                                      A nr  n,n+1
                              A nr
                                   A nr
                            (n)   (n+1)    (n+1)

                                         A
                             A rr  A rr    r,n+1
                            (n)   (n+1)
                                         A
                                           (n+1)
                                           n,n+1
                        =   A nr
                                A nr
                                  (n+1)   (n+1)
                            •   A       A n+1,n+1

                                  n+1,r
                        = A (n) G n − A (n) G r ,                   (3.6.15)
                           rr       nr
          where
                                      (n+1)
                                     A       A  (n+1)

                                      ir       i,n+1
                                      (n+1)   (n+1)
                              G i =
                                    A       A
                                              n+1,n+1
                                      n+1,r
                                         (n+1)
                                 = A n+1 A        .                 (3.6.16)
                                         i,n+1;r,n+1
          Hence,
                                  (n)  (n+1)      (n)  (n+1)
                    A n P = A n+1 A  A n,n+1;r,n+1  − A  A r,n+1;r,n+1  .
                                 rr               nr
   54   55   56   57   58   59   60   61   62   63   64