Page 36 - Distillation theory
P. 36

P1: FCH
            0521820928c01  CB644-Petlyuk-v1                                                      June 11, 2004  17:45





                        10     Phase Equilibrium and Its Geometric Presentation

                                      2                  2                   2
                                a)                  b)                  c)
                                  12     24
                                                             24         12
                                       23
                                                         23
                               1              4   1  123         4    1              4
                                                                                  34
                                      3                  3                   3

                                      2                  2                   2
                                 d)                 e)                  f)
                                                                        12    23
                                                          23
                                  123                                    123
                               1              4   1  123         4    1       23  234  4
                                       134               134                 134
                                 13                          34
                                                     13
                                      3                  3                   3
                               Figure 1.7. The examples of four-component structures (bonds and distil-
                                            ∞
                               lation regions Reg ). Separatrix surfaces are shaded. Arrows, direction of
                               residium curves; dotty lines, separatrixes.
                               1 ⇒ 4, 1 ⇒ 2, 23 ⇒ 4, 23 ⇒ 2 (at Fig. 1.7b), 1 ⇒ 3, 1 ⇒ 4, 2 ⇒ 3, 2 ⇒ 4 (at Fig.
                               1.7c), 13 ⇒ 1, 13 ⇒ 3, 2 ⇒ 1, 2 ⇒ 3 (at Fig. 1.7d), 134 ⇒ 1, 4 ⇒ 1 (at Fig. 1.7e),
                               23 ⇒ 2, 23 ⇒ 3, 4 ⇒ 2, and 4 ⇒ 3 (at Fig. 1.7f).
                                 The examples of distillation subregions Reg  are 12 → 23 → 3 →4, 12 →
                                                                        sub
                               1 → 3 → 4, and 12 → 23 → 24 → 4 (Fig. 1.7a). In this case, the distillation region
                               Reg ∞  is 12 ⇒ 4 (Reg  ∈ Reg ), or
                                                         ∞
                                                 sub
                                    ↑→ 1 →↓
                                   12 → 23 → 3 → 4
                                          ↓→ 24 →↑
                                 As we will see in Chapter 3, the distillation region and subregion character-
                               ize those possible product compositions that can be produced from the given
                               feedstock composition by distillation under one of the most important modes, in
                               particular, under the infinite reflux mode.
                                 A bond, bond chain, distillation subregion, and region are the nonlocal structural
                               elements of the azeotropic mixture concentration space.


                        1.6.   Matrix Description of the Multicomponent Mixture Residue
                               Curve Structure

                               The structure of the residue curve bundles can be obviously represented only for
                               binary, three-, and four-component mixtures. For mixtures with more components,
                               it is impossible. However, practice needs make necessary the analysis of the bundle
                               structure with any number of components. This problem can be solved by means
                               of a structure matrix description (Petlyuk et al., 1975a, 1975b).
   31   32   33   34   35   36   37   38   39   40   41