Page 187 - Dynamics and Control of Nuclear Reactors
P. 187

184    CHAPTER 13 Boiling water reactors




                                                      n
                                                     X
                                                          ð
                                                 xtðÞ ¼  a i xt iΔtÞ + vtðÞ             (13.5)
                                                      i¼1
                         where
                            x(t) is a stationary random signal (measured by neutron detectors).
                            v(t) is a model prediction error.
                            {a i , i¼1, 2, …, n} is a set of model parameters.
                            Δt¼data sampling interval (sec).
                            n¼model order.
                         The model parameters {a i ,i¼1, 2, …, n}and the AR model order n are estimated using
                         the measurements such that the model prediction error is minimized. The least-squares
                         approach uses the given sampled measurements {x(1), x(2), …,x(N)},where Nis
                         the total data points. More general forms of the AR model, called an auto-regression
                         moving average (ARMA) model, are used in some applications. See Ref. [11] for
                         details.
                            An example illustrates the evaluation of a time series model. Consider the form
                         of Eq. (13.5) for a second-order fit. The analysis begins with the third measured
                         value of x(t).

                                                x 3ðÞ ¼ a 1 x 2ðÞ + a 2 x 1ðÞ + v 3ðÞ
                                                x 4ðÞ ¼ a 1 x 3ðÞ + a 2 x 2ðÞ + v 4ðÞ
                                                x 5ðÞ ¼ a 1 x 4ðÞ + a 2 x 3ðÞ + v 5ðÞ   (13.6)
                                                           ⋮
                                                              ð
                                             xNðÞ ¼ a 1 xN  1ð  Þ + a 2 xN  2Þ + vNðÞ
                         Note that a 1 and a 2 are unknown parameters whose values are sought by using all the
                         available measurements {x(1), x(2), …, x(N)}. An efficient approach for estimating
                         the parameters is to minimize the error between the left hand side and the right hand
                         side (also called the model prediction error by minimizing a squared error function
                         shown below, with respect to (a 1 ,a 2 ):
                                               N
                                              X
                                                                        2
                                                         ð
                                                                  ð
                                                                        ð
                                        Min J ¼  ð xkðÞ a 1 xk  1Þ a 2 xk  2ÞÞ a1, a2Þ  (13.7)
                                              k¼3
                         The two parameters are estimated by solving the two equations obtained from
                                                    ∂J       ∂J
                                                      ¼ 0 and  ¼ 0                      (13.8)
                                                    ∂a 1     ∂a 2
                         The two equations are then simplified by collecting the terms multiplying a 1 and a 2
                         and solving for the 2-dimensional vector (a 1 ,a 2 ) to give the following solution:
                                        N            N                  N
                                   2                              3 1 2           3
                                       X            X                  X
                                                2
                                                       ð
                                                             ð
                                           ð
                                          xk  1Þ       xk  1Þxk  2Þ      xkðÞxk  1Þ
                                                                             ð
                                    6                             7   6           7
                               a 1  6   k¼3         k¼3           7   6  k¼3      7
                                  ¼  6                            7   6           7     (13.9)
                                   6  N                N          7   6  N        7
                               a 2   X                 X               X
                                   4                           2  5   4           5
                                                                             ð
                                        ð
                                       xk  1Þxk  2Þ      xk  2Þ          xkðÞxk  2Þ
                                                          ð
                                              ð
                                     k¼3               k¼3             k¼3
   182   183   184   185   186   187   188   189   190   191   192