Page 271 - Dynamics and Control of Nuclear Reactors
P. 271

APPENDIX D Laplace transforms and transfer functions    273




                  This formidable-looking formula is quite easy to apply, especially for a first order
                  pole (n¼1).
                     For the first order case, the residue becomes

                                                        st
                                          R s1 ¼ s s 1 ÞFsðÞe Š                 (D.11)
                                              ½
                                               ð
                                                          s¼s 1
                  This can be applied to the general transform with all first order poles (a 1 ,a 2 , …)
                                            ð s b 1 Þ s b 2 Þ… s b m Þ
                                                  ð
                                                         ð
                                       FsðÞ ¼                                   (D.12)
                                             ð s a 1 Þ s a 2 Þ… s a n Þ
                                                  ð
                                                         ð
                  Inversion by the residue theorem gives (by inspection)
                                                       ð
                                              ð
                                        ð a 1  b 1 Þ a 1  b 2 Þ… a 1  b m Þ  a 1 t
                                   ftðÞ ¼                     e  + ⋯
                                              ð
                                                       ð
                                        ð a 1  a 2 Þ a 1  a 3 Þ… a 1  a n Þ
                                                                                (D.13)
                                          ð a n  b 1 Þ a n  b 2 Þ… a n  b m Þ  a n t
                                                         ð
                                                ð
                                        +                       e
                                                        ð
                                                ð
                                         ð a n  a 1 Þ a n  a 2 Þ… a n  a n 1 Þ
                  Note that inversion for a specific pole involves removal of the term containing that
                  pole and substituting that pole’s value for s in the other terms. A little experience will
                  permit one to perform such an inversion very quickly.
                   Example D.4
                    Let us use the method of residues to invert the following Laplace transform
                                                     ð
                                                 ð s +1Þ s +4Þ
                                           FsðÞ ¼                             (D.14)
                                               ð s +2Þ s +6Þ s +7Þ
                                                        ð
                                                   ð
                       The inversion gives:
                                                                 ð
                                                  ð
                             ð  2+ 1Þ  2+ 4Þe  2t  ð  6+ 1Þ  6+ 4Þe  6t  ð  7+1Þ  7+4Þe  7t
                                   ð
                         ftðÞ ¼            +              +
                              ð  2+ 6Þ  2+ 7Þ  ð  6+ 2Þ  6+ 7Þ  ð  7+2Þ  7+6Þ  (D.15)
                                                                  ð
                                    ð
                                                   ð
                              1     5    18
                         ft ðÞ ¼  e  2t    e  6t  +  e  7t
                             10     2    5
                   Example D.5
                    Consider a second order pole
                                                     ð
                                                 ð s +1Þ s +4Þ
                                             FsðÞ ¼      2                    (D.16)
                                                 ð s +2Þ s +6Þ
                                                     ð
                       The residue at the pole, s¼ 2, is given by
                                               ð  2+1Þ  2+4Þ   2t
                                                     ð
                                          R s¼ 2 ¼     2  e
                                                  ð  2+6Þ
                                                     1   2t
                                              R s¼ 2 ¼  e
                                                    8
   266   267   268   269   270   271   272   273   274   275   276