Page 158 - Dynamics of Mechanical Systems
P. 158

0593_C05_fm  Page 139  Monday, May 6, 2002  2:15 PM





                       Planar Motion of Rigid Bodies — Methods of Analysis                         139



                                      Q                                     2   λ   Q
                                 B  2                                n         2
                                         45°                           y             45°
                           3.0 m
                                                                               B  2            ν 3
                       P      30°               B  3               P     30°
                                                                          OP
                              OP
                             α    = 4 rad/sec 2   4.95 m                α    = 4 rad/sec 2      λ 3
                              OP
                                                                          OP
                        2.0 m   ω   = 5 rad/sec                  λ  1    ω     = 5 rad/sec   B  3   n  x
                            B  1
                                                                 ν  1               n  z
                       O             6.098 m            R         O    B  1                         R
                      FIGURE 5.5.5                              FIGURE 5.5.6
                      Example four-bar linkage.                 Unit vectors for the analysis of the linkage of
                                                                Figure 5.5.5.



                       and
                                               . ( )
                                                                 +
                                                                             =
                                              2 0 sin 90 +( )  30 4 95sin 315 0                 (5.5.9)
                                                                    .
                                                         3 0 sin
                                                          .
                        Next, recall that B  and B  have pure rotation about points O and R, respectively, and
                                               3
                                         1
                       that B  has general plane motion.
                            2
                        Third, let us introduce unit vectors λλ λλ  and νν νν  (i = 1, 2, 3) parallel and perpendicular to
                                                                i
                                                          i
                       the bars as in Figure 5.5.6. Then, in the configuration shown, the λλ λλ  and νν νν  may be expressed
                                                                                i
                                                                                     i
                       in terms of horizontal and vertical unit vectors n  and n  as:
                                                                  x
                                                                         y
                                                     λλ = n    and    νν = −n                  (5.5.10)
                                                      1   y       1    x
                                       λλ = (      +(            νν =−(     +(
                                                                                 /
                                              /
                                        2    3 2)n x  12)n    and     2  12)n x  3 2)n y        (5.5.11)
                                                          y
                                     λλ = (       −(              νν = (      +(
                                                                         /
                                                      /
                                            /
                                                                                   /
                                      3    22)n x    22)n    and     3  22)n x    22)n y       (5.5.12)
                                                          y
                       Consider the velocity analysis: because B  has pure rotation, its angular velocity is:
                                                           1
                                                       =
                                                    ωω OP D  ωω =−5n  z  rad sec               (5.5.13)
                                                           1
                       The velocity of joint P is then:
                                                   v = ωω  ×  OP = −5 n × 2 0 λλ
                                                    P
                                                                       .
                                                        1          z      1
                                                                                               (5.5.14)
                                                     =−10 νν  = 10 n m sec
                                                           1     x
                        (Recall that O is a center of zero velocity of B  and that P moves in a circle about O.)
                                                                1
   153   154   155   156   157   158   159   160   161   162   163