Page 449 - Dynamics of Mechanical Systems
P. 449

0593_C12_fm  Page 430  Monday, May 6, 2002  3:11 PM





                       430                                                 Dynamics of Mechanical Systems


                       points on the pin axes, and B , B , and B  are the rods themselves. Using this notation, the
                                                          3
                                                   2
                                                1
                       angular velocities of the rods are:
                                                               ˙
                                                   ˙
                                                                           ˙
                                                                       B 3
                                              ωω = θ n  ,  ωω = θ n  ,  ωω = θ n               (12.4.1)
                                                B 1
                                                           B 2
                                                    1  3        2  3        3  3
                       Also with this notation, the mass center and pin velocities are:
                                                           n
                                                v G 1  = (l  2)θ ˙  11θ
                                                        n +(l
                                                v G 2  = lθ ˙ 11θ  2)θ ˙  2 n 2θ               (12.4.2)
                                                        n + lθ
                                                v G 3  = lθ ˙ 1 1θ  ˙  2 n +(l  2)θ ˙  3 n 3θ
                                                                2θ
                       and

                                                  v Q 1  = lθ ˙ 11θ
                                                         n
                                                         n + lθ
                                                  v Q 2  = lθ ˙  11θ  ˙  2 n 2θ                (12.4.3)
                                                         n + lθ
                                                  v Q 3  = lθ ˙  1 1θ  ˙  2 n + lθ ˙  3 n 3θ
                                                                  2θ
                        The partial angular velocities of the rods are then

                                                                        1 B
                                                  1 B
                                                             1 B
                                                ωω = n  ,  ωω =  0  ,  ωω =  0
                                                 ˙ θ 1  3   ˙ θ 2      ˙ θ 3
                                                ωω =  0  ,  ωω = n  ,  ωω =  0                 (12.4.4)
                                                            B
                                                                       B
                                                 B
                                                             2
                                                                        2
                                                  2
                                                 ˙ θ 1      ˙ θ 2  3   ˙ θ 3
                                                ωω =  0  ,  ωω =  0  ,  ωω = n
                                                                       B
                                                 B
                                                            B
                                                                        3
                                                             3
                                                  3
                                                 ˙ θ 1      ˙ θ 2      ˙ θ 3  3
                        Similarly, the partial velocities of the mass centers and of point Q are:
                                         v G 1  = (l  2) n  ,  v G 1  =  0  ,  v G 1  =  0
                                          ˙ θ 1    θ 1    ˙ θ 2          ˙ θ 3
                                         v  G 2  = l n  ,  v  G 2  = (l  2) n  ,  v G 2  =  0  (12.4.5)
                                          ˙ θ 1  θ 1      ˙ θ 2   2 θ    ˙ θ 3
                                         v  G 3  = l n  ,  v  G 3  = l n  ,  v G 3  = (l  2) n
                                          ˙ θ 1  θ 1      ˙ θ 2  2 θ     ˙ θ 2    3 θ
                       and
                                               Q
                                              v = l n  ,  v Q  = l n  ,  v  Q  = l n           (12.4.6)
                                               ˙ θ 1  θ 1  ˙ θ 2  2 θ   ˙ θ 3  3 θ
                        The applied forces that contribute to the generalized forces are weight forces  mgn 1
                       through the mass centers, the weight force Mgn  through Q, and the moments at the pin
                                                                 1
                       joints. Hence, the generalized forces become:
                                                                           ⋅
                                                       ⋅
                                              F =  mgnv  G 1  +  mgnv  G 2  +  mgnv G 3
                                                                 ⋅
                                                                             ˙
                                                                   ˙
                                                         ˙
                                               θ 1    1  θ 1    1  θ 1    1  θ 1
                                                                         ⋅
                                                   + Mgnv  Q  +( M − M )n ωω B 1               (12.4.7)
                                                         ⋅
                                                                            ˙
                                                        1  ˙ θ 1  1  2  3   θ 1
                                                   +( M − M )n ωω B 2  + M n ωω B 3
                                                               ⋅
                                                                          ⋅
                                                       2   3  3   ˙    3  3  ˙
                                                                 θ 1        θ 1
   444   445   446   447   448   449   450   451   452   453   454