Page 450 - Dynamics of Mechanical Systems
P. 450

0593_C12_fm  Page 431  Monday, May 6, 2002  3:11 PM





                       Generalized Dynamics: Kane’s Equations and Lagrange’s Equations             431


                        By substituting from Eqs. (12.4.4), (12.4.5), and (12.4.6),  F   becomes:
                                                                           θ 1
                                  F =−  mg(l  2)sin θ − mglsin θ −  mglsin θ + M −  M −  Mglsin θ
                                   θ 1            1         1         1    1   2          1
                       or

                                            F =−( 52) mglsin θ + M −  M −  Mglsin θ            (12.4.8)
                                            θ 1              1   1    2         1
                       Similarly, F  and  F  are:
                                 θ 2   θ 3
                                           F =−(  32) mglsin θ + M − M −  Mglsin θ             (12.4.9)
                                            θ 2              2   2    3          2
                       and

                                              F =−( 12) mglsin θ + M −  Mglsin θ              (12.4.10)
                                               θ 3             3    3         3
                        The kinetic energy K of the system may be expressed as:

                                     K = ( ) m( ) +( ) ( ) +( )      m( ) +( ) ( )     2
                                                              2
                                                                           2
                                                   2
                                                                              12 I ωω
                                                      12 I ωω
                                               v
                                         12
                                                                       v
                                                                  12
                                                                        G 2
                                                G 1
                                                                                    B 2
                                                            B 1
                                                                                               (12.4.11)
                                                     2
                                                                 2
                                                        12 I ωω
                                                                            Q
                                                  v
                                                                    12 M v
                                          +(12  m ) ( ) +( ) ( ) +( ) ( )     2
                                                   G 3
                                                               B 3
                       where I is the central moment of inertia of a rod about an axis normal to the rod and given
                       by:
                                                         I = ( )ml 2                          (12.4.12)
                                                             12
                        Using Eqs. (12.4.1) and (12.4.2) K becomes (after simplification):
                                     K = ( ) [        2 ˙  +( ) 3 θ 2 ˙  +( )θ 2 ˙  + 3θ θ  cos θ  − )
                                                                          ˙ ˙
                                                                                     θ
                                             m ( ) 3 θ
                                               2
                                                 7
                                         12
                                              l
                                                      1  4    2  13   3   1  2   ( 2  1
                                          +θ θ  cos θ  − ) + θ θ  cos θ  − )]
                                                           ˙˙
                                                                       θ
                                            ˙˙
                                                       θ
                                            2  3  ( 3   2   1  3  ( 3   1                     (12.4.13)
                                                                ˙ ˙
                                                  2 ˙
                                          +(12  M )  l θ 1 [  2  + θ 2 ˙  2  + θ 2 3  + 2θ θ 3 cos θ 2 (  − θ )
                                                                 1
                                                                             1 1
                                             ˙˙
                                                              ˙˙
                                          + 2θθ  cos  3 (θ  − θ 2) + 2θθ  cos  3 (θ  − θ 1)]
                                             2  3             3  1
                        By differentiating in Eq. (12.4.13), we obtain the following terms, useful in Lagrange’s
                       equations:
                                                       ˙˙
                                                                      ˙˙
                                                                  θ
                                                                                 θ
                                     ∂K  ∂θ  = ( )ml 2 [ 3 θ θ sin (θ  − ) − θ θ sin (θ  − )]
                                              12
                                           1            12     2   1   1  3   1   3           (12.4.14)
                                                       [  ˙              ˙         − )]
                                                                    θ
                                                      2
                                              +( ) Ml  2 θθ sin (θ 2  − ) − θ θ sin (θ 1  θ 3
                                                                        2
                                               12
                                                            2
                                                                            1
                                                                          3
                                                          1
                                                                     1
   445   446   447   448   449   450   451   452   453   454   455