Page 513 - Dynamics of Mechanical Systems
P. 513

0593_C14_fm  Page 494  Tuesday, May 7, 2002  6:56 AM





                       494                                                 Dynamics of Mechanical Systems


                       kinematical quantities in terms of n , n , and n . To this end, the configuration graph may
                                                         2
                                                      1
                                                                3
                       be used to obtain the relations:
                                                     d = cosψ n − sinψ n
                                                      1        1       3
                                                     d =  n                                    (14.6.1)
                                                      2   2
                                                     d = sinψ n + cosψ n
                                                      3        1       3
                                                      ˆ n =  n
                                                       1   1
                                                      ˆ n = cos n −θ  sin n                    (14.6.2)
                                                                    θ
                                                       2       2       3
                                                                    θ
                                                      ˆ n = sin n +θ  cos n
                                                       3       2       3
                       and

                                                            φ
                                             N = cosφ n − sin cosθ n + sin sinθ n
                                                                        φ
                                               1       1           2           3
                                                            φ
                                             N = sinφ n + cos cosθ n − cos sinθ n              (14.6.3)
                                                                        φ
                                               2       1           2           3
                                             N = sinθ n + cosθ n
                                               3       2       3
                        Using the procedures of Chapter 4 and the configuration graph of Figure 14.6.2, we
                       readily find the angular velocity of D in R to be (see Eq. (4.7.6)):

                                                     R  D       ˙    ˙
                                                      ωω= ˙ ψn  + θn  + ˆ                      (14.6.4)
                                                                     φn
                                                             2    1    3
                        Then, by using the third expression of Eq. (14.6.2) to express n  in terms of n and n ,
                                                                                                     3
                                                                                              2
                                                                                 3
                       R ωω ω ω  becomes:
                         D
                                                             φ
                                                             ˙
                                               R  D  ˙  +( ˙ ψ + sinθ  φ ˙
                                                ωω= θn            )n  + cosθn                  (14.6.5)
                                                       1            2        3
                        Observe in Eq. (14.6.4) that in computing the angular acceleration of D in R we will
                       need to compute the derivatives of the unit vectors n , n , and n . Observe further from
                                                                       1
                                                                                 3
                                                                          2
                       the configuration graph of Figure 14.6.1 that the n  (i = 1, 2, 3) are fixed in reference frame
                                                                   i
                       ˆ
                       D . Then, also from the configuration graph, we see that:
                                                 R  D ˆ  ˙  + φ ˙  + φ ˙
                                                  ωω = θn    sinθn    cosθn                    (14.6.6)
                                                         1        2        3
                       Hence, from Eq. (4.5.2) the derivatives of the n  in R are:
                                                                 i
                                                                        φ
                                                                        ˙
                                                               ˙
                                                               φ
                                                     R
                                              dn  dt = ωω D ˆ  × n = cosθ n − sinθ n
                                                1           1        2        3
                                                                φ
                                                                ˙
                                                     R
                                              dn  dt = ωω D ˆ  × n = − cosθ n + θ ˙  n         (14.6.7)
                                                2           2          1   3
                                                     R
                                              dn  dt = ωω D ˆ  × n = −θ ˙ n + sinφ ˙  θ n
                                                3           3     2        1
   508   509   510   511   512   513   514   515   516   517   518