Page 517 - Dynamics of Mechanical Systems
P. 517

0593_C14_fm  Page 498  Tuesday, May 7, 2002  6:56 AM





                       498                                                 Dynamics of Mechanical Systems


                       and

                                                   ( [
                                                                  θ
                                                     ˙ ˙
                                          −mr sinψψφ   cosθ + φ 2 ˙  sin cosθ θ ˙˙  ( 1  )
                                                                       − ) + cosψ
                                             2
                                                                      ˙
                                               ψ
                                          + sin cosθ φψ      ψ     + 2 ˙ sinψ ]
                                           ˙˙
                                           φ
                                                                     θψ
                                                       ˙
                                                     + ˙ cos cosθ
                                                                                              (14.6.30)
                                          − ( ˙ ˙  + cosθ φθ sin  ) θ
                                                          ˙ ˙
                                                  ˙˙
                                              ψθ φ
                                                        −
                                           I
                                            33
                                                   ˙
                                                        ˙
                                                   θψ φ
                                                                      θ
                                          +(I  − ) ( ˙  + sinθ ) − mgrsin sinψ  = 0
                                                I
                                             11  22
                        Equations (14.6.28), (14.6.29), and (14.6.30) are the governing equations of motion of the
                       rim-weighted disk. Observe that if we remove the mass on the rim (that is, let m = 0) and
                       if we let I , I , and I  have the values as in Eq. (14.6.23), then Eqs. (14.6.28), (14.6.29), and
                                         33
                                  22
                               11
                       (14.6.30) reduce to:
                                            (
                                           4 gr)sinθ − θ ˙˙  4φ 2 ˙  sin cosθ + ψφ cosθ − θ
                                                                θ
                                                      4 +
                                                                       4 ˙ ˙
                                                                                 ˙˙
                                                                                              (14.6.31)
                                            ψφ
                                           + ˙ ˙  cosθ ( ˙ ψ  + sinφ ˙  θ ) cosφ ˙  θ =  0
                                                                  ˙ ˙
                                                    3 ˙˙ ψ + 3 sinθ + 5θφ cosθ                (14.6.32)
                                                          φ
                                                          ˙˙
                       and
                                                                 ˙ ˙ (
                                              ψθ φ cosθ φθ−  ˙ ˙  sinθ θ ψ φ ˙  sinθ) = 0     (14.6.33)
                                                  ˙˙
                                              ˙ ˙
                                                +
                                                                +
                                                                     +
                        After simplification, these equations are seen to be identical to Eqs. (14.5.1), (14.5.2), and
                       (14.5.3), the governing equations for the uniform rolling/pivoting circular disk.
                        Next, observe that two steady-state solutions of Eqs. (14.5.28), (14.6.29), and (14.6.30)
                       occur when the disk D is pivoting with the mass at Q in either the upper-most or lower-
                       most position. Specifically, for Q in the upper- or top-most position, we have:
                                                               ˙
                                                            ˙
                                                     θ = 0,  φ =  φ ,  ψ = 0                  (14.6.34)
                                                               0
                       where  φ ˙  0  is the steady-state spin speed. Similarly, for Q in the lower- or bottom-most
                       position, we have:
                                                            ˙
                                                               ˙
                                                     θ = 0,  φ =  φ ,  ψ =  π                 (14.6.35)
                                                                0
                       In the following paragraphs we examine the stability of these two positions.
                       14.6.1  Rim Mass in the Uppermost Position
                       Let there be a small disturbance to the equilibrium position with the rim mass in its upper-
                                                                             ˙
                                                                             φ
                       most position, as defined by Eq. (14.6.34). Specifically, let θ, , and ψ have the forms:
                                                θ =+  θ ,  φ = φ +  φ ,  ψ =+ ψ *             (14.6.36)
                                                          ˙
                                                                 * ˙
                                                             ˙
                                                      *
                                                   0
                                                                        0
                                                              0
   512   513   514   515   516   517   518   519   520   521   522