Page 514 - Dynamics of Mechanical Systems
P. 514

0593_C14_fm  Page 495  Tuesday, May 7, 2002  6:56 AM





                       Stability                                                                   495


                        Using Eq. (14.6.7) we can now differentiate Eq. (14.6.5) to obtain the angular acceleration
                       of D in R as:


                                                                   ˙ ˙
                                                                           ˙˙
                                                  − ˙ ˙
                                                ˙˙
                                                                 +
                                          R αα=(θ ψφ  cosθ )n  +( ˙˙ ψ θφ cosθ + sinφ  ) θ n
                                             D
                                                            1                     2
                                                                                               (14.6.8)
                                                              ˙ ˙
                                                      ˙˙
                                                +( ˙ ˙  + cosθ φθ sin  ) θ n
                                                  ψθ φ
                                                            −
                                                                      3
                        Recall that because D is pivoting (a special case of rolling; see Section 4.11) on a surface
                       in the X–Y plane, the velocity of the center G of D in R is (see Eq. (4.11.5)):
                                              V = ωω   × rn =  r( ˙ ψφ  n ) θ  − θ             (14.6.9)
                                             R  G  R  D           ˙          ˙
                                                                 + sin
                                                                            r n
                                                          3              1     2
                        Similarly, because Q is fixed in D, the velocity of Q in R is:
                                                     V = ωω     rn +                          (14.6.10)
                                                    R  G  R  D ×(    rd )
                                                                  3    3
                        Then, by using Eqs. (14.6.1) and (14.6.6), we obtain:
                                                                ˙
                                               Q
                                             R V =  r ( [ ψ 1 + cosψ ) + ( φ 1 + cosψ )sin  n ] θ  1
                                                    ˙
                                                                 ˙
                                                  + r[ sin cosφ ˙  ψ  θ  − ( θ 1 + cosψ  n )]  (14.6.11)
                                                                            2
                                                        + sinθ
                                                   − r ( [ ψφ ˙  )sinψ n ]
                                                      ˙
                                                                      3
                        Finally, by differentiating in Eqs. (14.6.9) and (14.6.11) and by using Eq. (14.6.7), we
                       obtain the accelerations of G and Q in R to be:
                                                      + sinθ
                                               a =
                                                        ˙˙
                                              RG   r( ˙˙ ψφ  + θφ2 ˙ ˙ cosθ n )
                                                                        1
                                                    r( θφ
                                                                    + ˙ ˙
                                                       ˙˙
                                                  +− +    ˙ 2 sin cosθ ψφ cosθ n )            (14.6.12)
                                                              θ
                                                                              2
                                                    r( ˙˙ ˙
                                                  +−ψφ   sinθ − φ ˙ 2 sin θ − θ ˙ 2  n )
                                                                    2
                                                                           3
                       and
                                       a =  r ( [ ψ 1 + cos ψ ) − ˙ sin ψ  + ( φ 1 + cos ψ )sinθ
                                                         ψ
                                      R  Q                2       ˙˙
                                             ˙˙
                                                   θ
                                           − φψ2  ˙ ˙ sin sin ψ  + φθ2 ˙ ˙ (1 + cos ψ )cosθ
                                           − φ 2 sin ψ n ]
                                                     1
                                              ˙ ˙
                                           + r[ ψφ (1 + cos ψ )cosθ φ ˙ 2  + cos ψ )sin cosθ  θ
                                                              + (1
                                                                                              (14.6.13)
                                            ˙˙
                                                        ˙˙
                                           − ( θ 1 + cos ψ ) + sinφ  ψ cosθ
                                           + φ ˙˙ cos ψ  cosθ + 2 θψ
                                             ˙
                                             ψ
                                                           ˙ ˙ sin ψ]n
                                                                    2
                                           +− [  ψφ sinθ φ (1 + cos ψ) sin θ − 2 ψφ cos ψ sinθ
                                               ˙ ˙
                                                                          ˙ ˙
                                                     −
                                                                    2
                                                       ˙ 2
                                                                              θ
                                                         ˙ cos ψ −
                                           −  θ (1 + cos ψ) − ψ  2  ψ     φ sin sin ψ] n
                                                                          ˙˙
                                                                  ˙˙ sin ψ −
                                             ˙ 2
                                                                                      3
   509   510   511   512   513   514   515   516   517   518   519