Page 599 - Dynamics of Mechanical Systems
P. 599

0593_C17_fm  Page 580  Tuesday, May 7, 2002  7:12 AM





                       580                                                 Dynamics of Mechanical Systems


                       Let Q be the intersection point of the Y-axis and the base circle. Q is then at the origin of
                       the involute curve. The arc  TQ   then has the same length as the generating line segment
                       TP. Hence, we have:


                                                        TP = TQ  = r β                         (17.4.7)
                                                                   b
                        The angle β may be considered as the unwrapping angle. It is often helpful to express the
                       coordinates of P in terms of β. From Figure 17.4.5 we have:


                                           r =  OP =  OT +  TP =  r + β  = r 1+ (  β 2 )       (17.4.8)
                                                  2
                                                        2
                                                              2
                                                                  2
                                            2
                                                                           2
                                                                     2 2
                                                                    r
                                                                 b   b    b
                       or
                                                                +
                                                         r = r 1 β 2                           (17.4.9)
                                                             b
                       Also, from Figure 17.4.5 we can obtain the coordinates x and y as follows:
                                                           =
                                                                +
                                                        OP OT TP                              (17.4.10)
                       But, OT may be expressed as:
                                                   OT = r cosγ n + r sin γ n                   (17.4.11)
                                                         b     x  b     y

                       and as:
                                                   OT = r sinβ n + r cosβ n                   (17.4.12)
                                                         b     x  b      y
                       Similarly, TP may be expressed as:


                                                   TP = r β ( −sin γ n + cos γ n  )           (17.4.13)
                                                        b        x      y

                       and as:
                                                  TP = r β ( −cos β n + sin β n  )            (17.4.14)
                                                        b        x       y
                       Then, from Eq. (17.4.10) we have:

                                         OP = r sinβ n + r cosβ n − r cosβ n + r sinβ n
                                                                  β
                                                                            β
                                              b      x  b     y  b       x  b      y
                                            = ( r sinββ     n )  + ( r cosβ + sinβ  n ) β     (17.4.15)
                                                    − cosβ
                                              b              x  b             y
                                            = x n + y n
                                                x    y
                       or

                                                   − cosβ
                                                                             β
                                          x = (sinββ      ) and   y = (cosβ + sinβ )          (17.4.16)
                                             r
                                                                     r
                                              b                      b
   594   595   596   597   598   599   600   601   602   603   604