Page 97 - Dynamics of Mechanical Systems
P. 97

0593_C04*_fm  Page 78  Monday, May 6, 2002  2:06 PM





                       78                                                  Dynamics of Mechanical Systems



                                                                                  n
                                                                                    3
                                                                                         n
                                                                                           2
                                                            N
                                                             3
                                                                                  n
                                                                                   1
                                                                 R
                                                                             B
                       FIGURE 4.2.1
                                                                    N  2
                       A rigid body moving in a reference
                       frame.                               N  1

                                               1   0     0     c β  0  s   c γ  s −  γ   0
                                                                        β
                                               
                                      S =  ABC = 0  c α   s −  α    0  1  0    s  c γ  0  
                                                             
                                               
                                                                           γ
                                                             
                                                                         
                                               
                                                                          
                                               0   s α  c  − s β  0  c  0    0      1 
                                                             
                                                                        β
                                                          α
                                                                                                (4.2.3)
                                                   cc           − c s       s  
                                                    β γ           β γ        β  
                                                               c c −
                                                 cs +
                                               
                                                     = ( αγ  s s c ) ( α γ  s s s )  −ssc 
                                                                              α β
                                                       α β γ
                                                                     α β γ
                                                 ss − c s c ) ( s c + c s s )  
                                                                             α β 
                                                (   αγ  α β γ  α γ  α β γ  cc  
                       Example 4.2.1: Use of Transformation Matrices
                       Suppose in Eq. (4.2.3) that α, β, and γ have the values 30, 60, and 45 degrees, respectively.
                       Determine expressions relating the unit vector sets N  and n .
                                                                      i     i
                        Solution: By substituting for  α,  β, and  γ in Eq. (4.2.3), we obtain the transformation
                       matrix S as:
                                                                       .
                                                     0 354.  −0 354.  0 866  
                                                                          
                                                               .
                                                 S = 0 918.   0 306   −0 250.                  (4.2.4)
                                                    
                                                               .
                                                                       .
                                                     −  0 176.  0 884  0 433   
                       From Eq. (4.2.1) we have:
                                                  N =  S  n     and      n =  S  N              (4.2.5)
                                                    i   ij  j      i   ji  j
                       These expressions in turn may be written in the matrix forms:
                                                         n
                                                    N = S     and      n = S T N                (4.2.6)
                       where N and n are column arrays of the unit vectors N  and n . Hence, by comparing Eqs.
                                                                       i
                                                                             i
                       (4.2.4) to (4.2.6), we obtain the desired relations:
                                                                     0 866
                                                    0 354
                                                N = .    n − .   n + .   n
                                                            0 354
                                                 1        1       2        3
                                                    0 918
                                                N = .    n + .   n − .    n                     (4.2.7)
                                                             0 306
                                                                     0 250
                                                 2        1       2        3
                                                     0 176
                                                                      0 433
                                                N =− .    n + .   n + .    n
                                                              0 884
                                                 3         1        2       3
   92   93   94   95   96   97   98   99   100   101   102