Page 27 - Elements of Distribution Theory
P. 27

P1: JZP
            052184472Xc01  CUNY148/Severini  May 24, 2005  17:52





                                                  1.4 Distribution Functions                  13

                        If X is written in terms of component random variables X 1 ,..., X d each of which is real-
                        valued, X = (X 1 ,..., X d ), then
                                              F(x) = Pr(X 1 ≤ x 1 ,..., X d ≤ x d ).


                        Example 1.12 (Two-dimensional polytomous random vector). Consider a two-
                        dimensional random vector X with range

                                               2
                                     X ={x ∈ R : x = (i, j),  i = 1,..., m; j = 1,..., m}
                        and let

                                                   θ ij = Pr{X = (i, j)}.

                        The distribution function of X is given by
                                0                             if x 1 < 1or x 2 < 1
                               
                               
                               
                                θ 11                         if 1 ≤ x 1 < 2 and 1 ≤ x 2 < 2
                               
                               
                               
                               
                                θ 11 + θ 12                  if 1 ≤ x 1 < 2 and 2 ≤ x 2 < 3
                               
                                .
                               
                                .
                                .
                               
                               
                               
                               
                                θ 11 +· · · + θ 1m            if 1 ≤ x 1 < 2 and m ≤ x 2
                        F(x) =  .                                                  , x = (x 1 , x 2 ).
                                .
                                .
                               
                               
                                θ 11 +· · · + θ m1           if m ≤ x 1 and 1 ≤ x 2 < 2
                               
                               
                               
                                θ 11 +· · · + θ m1 + θ 12 +· · · + θ m2
                                                             if m ≤ x 1 and 2 ≤ x 2 < 3
                               
                                .
                               
                                .
                                .
                               
                               
                                1                             if m ≤ x 1 and m ≤ x 2
                        This is a two-dimensional step function.
                        Example 1.13 (Uniform distribution on the unit cube). Consider the random vector X
                                                                       3
                        defined in Example 1.5. Recall that X has range X = (0, 1) and for any subset A ⊂ X,

                                               Pr(X ∈ A) =      dt 1 dt 2 dt 3 .
                                                               A
                        Then X has distribution function

                                  x 3  x 2  x 1
                          F(x) =           dt 1 dt 2 dt 3 = x 1 x 2 x 3 ,  x = (x 1 , x 2 , x 3 ), 0 ≤ x j ≤ 1, j = 1, 2, 3
                                 0   0  0
                        with F(x) = 0if min(x 1 , x 2 , x 3 ) < 0. If x j > 1 for some j = 1, 2, 3, then F(x) =
                        x 1 x 2 x 3 /x j ;if x i > 1, x j > 1 for some i, j = 1, 2, 3, then F(x) = x 1 x 2 x 3 /(x i x j ).
                                                                             d
                          Like distribution functions on R,a distribution function on R is nondecreasing and
                        right-continuous.
                        Theorem 1.6. Let F denote the distribution function of a vector-valued random variable
                                         d
                        X taking values in R .
                                                                               d
                           (i) If x = (x 1 ,..., x d ) and y = (y 1 ,..., y d ) are elements of R such that x j ≤ y j ,
                              j = 1,..., d, then F(x) ≤ F(y).
   22   23   24   25   26   27   28   29   30   31   32