Page 437 - Engineering Electromagnetics, 8th Edition
P. 437

CHAPTER 12   Plane Wave Reflection and Dispersion      419

                     We thus have
                                                E  −  =   23 E  +                    (30)
                                                  x20
                                                           x20
                     We then write the magnetic field amplitudes in terms of electric field amplitudes
                     through
                                                       1
                                                H  +  =  E  +                       (31a)
                                                  y20
                                                       η 2  x20
                     and
                                                  1         1
                                         H y20  =−  E  −  =−    23 E +              (31b)
                                           −
                                                     x20
                                                                  x20
                                                 η 2        η 2
                         We now define the wave impedance, η w ,asthe z-dependent ratio of the total elec-
                     tric field to the total magnetic field. In region 2, this becomes, using (28a) and (28b),
                                              E xs2  E +  e − jβ 2 z  + E  −  e  jβ 2 z
                                                                 x20
                                                      x20
                                      η w (z) =   =
                                                      +
                                             H ys2  H y20 e − jβ 2 z  + H  −  e jβ 2 z
                                                                 y20
                     Then, using (30), (31a), and (31b), we obtain
                                                    e     +   23 e
                                                      − jβ 2 z  jβ 2 z
                                          η w (z) = η 2
                                                    e − jβ 2 z  −   23 e jβ 2 z
                     Now, using (29) and Euler’s identity, we have
                                   (η 3 + η 2 )(cos β 2 z − j sin β 2 z) + (η 3 − η 2 )(cos β 2 z + j sin β 2 z)
                       η w (z) = η 2 ×
                                   (η 3 + η 2 )(cos β 2 z − j sin β 2 z) − (η 3 − η 2 )(cos β 2 z + j sin β 2 z)
                     This is easily simplified to yield
                                                 η 3 cos β 2 z − jη 2 sin β 2 z
                                        η w (z) = η 2                                (32)
                                                 η 2 cos β 2 z − jη 3 sin β 2 z
                     We now use the wave impedance in region 2 to solve our reflection problem. Of
                     interest to us is the net reflected wave amplitude at the first interface. Since tangential
                     E and H are continuous across the boundary, we have
                                         E xs1  + E  −  = E xs2  (z =−l)            (33a)
                                           +
                                                 xs1
                     and
                                         H ys1  + H ys1  = H ys2  (z =−l)           (33b)
                                           +
                                                 −
                     Then, in analogy to (7) and (8), we may write
                                           E  +  + E  −  = E xs2 (z =−l)            (34a)
                                            x10
                                                   x10
                     and
                                           E x10  E  −  E xs2 (z =−l)
                                            +
                                                   x10
                                               −      =                             (34b)
                                           η 1    η 1     η w (−l)
                     where E  +  and E  −  are the amplitudes of the incident and reflected fields. We call
                            x10
                                    x10
                     η w (−l) the input impedance, η in ,to the two-interface combination. We now solve
   432   433   434   435   436   437   438   439   440   441   442