Page 235 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 235

220                   Finite Element Modeling and Simulation with ANSYS Workbench



                                             y




                                                              x

                                         z
                                            y, v
                                                  y
                                                     yx
                                              yz
                                                zy       xy
                                                              x
                                                  zx             x, u
                                           z           xz


                                     z, w

            FIGURE 7.1
            State of stress at a point in a 3-D elastic body.


              Similarly, the six independent strain components in 3-D can be expressed as

                                                
                                                  ε x
                                                  ε  
                                                  ε y
                                                   z
                                       ε = {}    γ   , or  ε [ ]                      (7.2)
                                           ε =
                                                              ij
                                                  xy
                                                
                                                 γ yz
                                                 γ zx
                                                
            7.2.1  Stress–Strain Relation
            The stress–strain relation in 3-D is given by


                                   1   −  v  v    v       0       0        0  
                                                                              
                σ x                v v  1 −  v  v       0       0        0     ε x  
                                   v     v    1 −  v    0       0       0       
                 σ y                                                         ε y  
                                                                                
                                                                               
                                                                                
                σ z       E                           1 −  2 v               ε z  
                  
                                                                                    
               
                  =                0     0      0       2       0       0         (7.3)
                 τ xy   (1 +  v)(1  − 2 v)                    1 −  v 2        γ xy 
                 τ yz              0     0      0       0                0   γ yz 
                                                                2              
                 τ zx                                              1 −  v 2    γ zx  
                                     0     0      0       0       0           
                                                                           2  
   230   231   232   233   234   235   236   237   238   239   240