Page 236 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 236

Three-Dimensional Elasticity                                                221



              Or in a matrix form:

                                                σ = E ε


            7.2.2  Displacement
            The displacement field can be described as

                                             u xyz(, ,)   u 1 
                                             
                                         u =  v xyz(, ,)                            (7.4)
                                                            
                                                       =  u 2
                                              w xyz,)    u  
                                                (,
                                                        3 
            7.2.3  Strain–Displacement Relation
            Strain field is related to the displacement field as given below

                                   ∂u        ∂v       ∂w
                              ε x =   ,  ε y =  ,  ε z =  ,
                                   ∂x        ∂y        ∂z
                                                                                       (7.5)
                                    ∂v   ∂u       ∂w    ∂v       ∂u   ∂w
                              γ xy =   +    ,  γ yz =  +  , γ xz =  +
                                    ∂x   ∂y       ∂y    ∂z      ∂ ∂z  ∂x


              These six equations can be written in the following index or tensor form:


                                          1 ( ∂ i u  ∂u )
                                     ε ij =     +   j  ,  ij = 12 3
                                                               ,,
                                                         ,
                                          2  ∂ j x  ∂ i x
              Or simply,

                                         1
                                    ε ij =  u (  ij u+  ji ) (Tensor notation)
                                                ,
                                            ,
                                         2
            7.2.4  Equilibrium Equations
            The stresses and body force vector f at each point satisfy the following three equilibrium
            equations for elastostatic problems:


                                       ∂σ x  +  ∂τ xy  +  ∂τ xz  +  x f = 0,
                                        ∂x    ∂y    ∂z

                                       ∂τ yx  +  ∂σ y  +  ∂τ yz  +  y f = 0,            (7.6)
                                        ∂x    ∂y    ∂z
                                               τ
                                       ∂τ zx  +  ∂τ zy  +  ∂σ z  +  z f = 0
                                        ∂x    ∂y    ∂z
   231   232   233   234   235   236   237   238   239   240   241