Page 285 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 285
270 Finite Element Modeling and Simulation with ANSYS Workbench
and
T
uMu i = 1,
i
T 2 for i = 12,, …, n
i
i
uKu i =ω ,
Form the modal matrix:
=[ uu 2 u ] (8.22)
Φ (nn× ) 1 n
We can verify that:
ω 1 2 0 0
0 2
T
Φ K Φ = Ω= ω 2 ( Spectral matrix)
0 (8.23)
2
0 0 ω
n
Φ Φ MΦ = I.
T
Transformation for the displacement vector:
u = z 11 u + + z n u = Φ z (8.24)
u + z 2
2
n
where
zt ()
1
zt ()
z = 2
zt
n ()
are called the principal coordinates.
Substitute Equation 8.24 into the dynamic Equation 8.8 and obtain:
Φ
Φ
Mz + Cz + Kz = f()
Φ
t
Premultiply this result by Φ , and apply Equation 8.23:
T
z + z + Ω z = p() (8.25)
t
C ϕ
where C φ =α +βΩ if proportional damping is applied, and p =Φ T f t().
I
If we employ modal damping:
ξω 1
2 1 0 0
0
ξω 2
C φ = 2 2
ξω n
0 2 n