Page 285 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 285

270                   Finite Element Modeling and Simulation with ANSYS Workbench



            and

                                      T
                                      uMu i = 1,
                                      i

                                      T       2  for  i = 12,,  …, n
                                      i
                                               i
                                      uKu i =ω ,
              Form the modal matrix:
                                                =[ uu 2    u  ]                       (8.22)
                                           Φ (nn×  )  1    n
              We can verify that:

                                         ω 1 2  0      0  
                                          0   2           
                             T
                           Φ K  Φ =  Ω=      ω 2           ( Spectral matrix)

                                                       0                            (8.23)
                                                         
                                                         2
                                          0      0   ω  
                                                         n
                           Φ Φ MΦ  = I.
                             T

              Transformation for the displacement vector:
                                     u = z 11   u +    + z n u = Φ z                  (8.24)
                                          u + z 2
                                                  2
                                                            n
            where
                                                  zt () 
                                                    1
                                                      
                                                   zt ()
                                                       
                                               z =   2  
                                                       
                                                  zt
                                                       
                                                   n () 
            are called the principal coordinates.
              Substitute Equation 8.24 into the dynamic Equation 8.8 and obtain:
                                                 Φ
                                                       Φ
                                        Mz +   Cz   + Kz =  f()
                                          Φ
                                                             t

              Premultiply this result by Φ , and apply Equation 8.23:
                                      T
                                              z +    z + Ω z =  p()                   (8.25)
                                                           t
                                              C ϕ
            where C φ =α +βΩ if proportional damping is applied, and p =Φ T f t().
                        I
              If we employ modal damping:
                                          ξω 1
                                        2 1       0           0   
                                          0                       
                                                  ξω 2
                                   C φ =        2 2               
                                                                  
                                                                  
                                                              ξω n
                                          0                 2 n   
   280   281   282   283   284   285   286   287   288   289   290