Page 44 - Foundations of Cognitive Psychology : Core Readings
P. 44

42   Daniel C. Dennett

                should resist all limitations and waterings-down of the Turing test. They make
                the game too easy—vastly easier than the original test. Hence they lead us
                into the risk of overestimating the actual comprehension of the system being
                tested.
                  Consider a different limitation of the Turing test that should strike a suspi-
                cious chord in us as soon as we hear it. This is a variation on a theme devel-
                oped in an article by Ned Block (1982). Suppose someone were to propose
                to restrict the judge to a vocabulary of, say, the 850 words of ‘‘Basic English,’’
                and to single-sentence probes—that is ‘‘moves’’—of no more than four words.
                Moreover, contestants must respond to these probes with no more than four
                words per move, and a test may involve no more than forty questions.
                  Is this an innocent variation on Turing’s original test? These restrictions
                would make the imitation game clearly finite. That is, the total number of all
                possible permissible games is a large, but finite, number. One might suspect
                that such a limitation would permit the trickster simply to store, in alphabetical
                order, all the possible good conversations within the limits and beat the judge
                with nothing more sophisticated than a system of table lookup. In fact, that
                isn’t in the cards. Even with these severe and improbable and suspicious
                restrictions imposed upon the imitation game, the number of legal games,
                though finite, is mind-bogglingly large. I haven’t bothered trying to calculate it,
                but it surely exceeds astronomically the number of possible chess games with
                no more than forty moves, and that number has been calculated. John Hauge-
                land says it’s in the neighborhood of ten to the one hundred twentieth power.
                For comparison, Haugeland (1981, p. 16) suggests that there have only been ten
                to the eighteenth seconds since the beginning of the universe.
                  Of course, the number of good, sensible conversations under these limits is a
                tiny fraction, maybe one quadrillionth, of the number of merely grammatically
                well formed conversations. So let’s say, to be very conservative, that there are
                only ten to the fiftieth different smart conversations such a computer would
                have to store. Well, the task shouldn’t take more than a few trillion years—
                given generous government support. Finite numbers can be very large.
                  So though we needn’t worry that this particular trick of storing all the smart
                conversations would work, we can appreciate that there are lots of ways of
                making the task easier that may appear innocent at first. We also get a re-
                assuring measure of just how severe the unrestricted Turing test is by reflect-
                ing on the more than astronomical size of even that severely restricted version
                of it.
                  Block’s imagined—and utterly impossible—program exhibits the dreaded
                feature known in computer science circles as combinatorial explosion.Noconcei-
                vable computer could overpower a combinatorial explosion with sheer speed
                and size. Since the problem areas addressed by artificial intelligence are verita-
                ble minefields of combinatorial explosion, and since it has often proven difficult
                to find any solution to a problem that avoids them, there is considerable plau-
                sibility in Newell and Simon’s proposal that avoiding combinatorial explosion
                (by any means at all) be viewed as one of the hallmarks of intelligence.
                  Our brains are millions of times bigger than the brains of gnats, but they are
                still, for all their vast complexity, compact, efficient, timely organs that some-
                how or other manage to perform all their tasks while avoiding combinatorial
   39   40   41   42   43   44   45   46   47   48   49