Page 136 - Fundamentals of Communications Systems
P. 136

4.12  Chapter Four


                       EXAMPLE 4.4
                       (Example 4.1 cont.)
                              x I (t) = 2 cos(2π f m t)  x Q (t) = sin(2π f m t)
                                                                   1           1
                             X I (f ) = δ(f − f m ) + δ(f + f m )  X Q (f ) =  δ(f − f m ) −  δ(f + f m )
                                                                  2 j          2 j
                             X z (f ) = X I (f ) + jX Q (f ) = 1.5δ(f − f m ) + 0.5δ(f + f m )
                       and using Eq. (4.14) gives the bandpass signal spectrum as

                               1.5              1              1.5               1
                       X c (f ) = √ δ(f − f c − f m ) + √ δ(f − f c + f m ) + √ δ(f + f c + f m ) + √ δ(f + f c − f m )
                                2             2 2                2              2 2
                       Note in this example B T = 2 f m




                       EXAMPLE 4.5
                       For the complex envelope derived in Example 4.3 the measured bandpass energy spec-
                       trum for f c = 7000 Hz is shown in Figure 4.10. Again the measured output is exactly
                       predicted by Eq. (4.15). In this example we have B T = 5000 Hz.





                             0

                           −10


                           −20


                         G y C ( f )  −30

                           −40


                           −50


                           −60

                           −70
                                −1  −0.8 −0.6 −0.4 −0.2  0   0.2  0.4  0.6  0.8  1
                                                   Frequency, f, Hz             × 10 4
                       Figure 4.10 The bandpass spectrum corresponding to Figure 4.8. B T = 5000 Hz.
   131   132   133   134   135   136   137   138   139   140   141