Page 146 - Fundamentals of Probability and Statistics for Engineers
P. 146
Functions of Random Variables 129
y
y
2 y =g(x)
y
y
1
x
x = g (y) x = g (y) x = g (y)
–1
–1
–1
1 1 2 2 3 3
Figure 5.10 An example of nonmonotonic function y g (x)
In the examples given above, it is easy to verify that all density functions
obtained satisfy the required properties.
Let us now turn our attention to a more general case where function
Y g(X ) is not necessarily strictly monotonic. Two examples are given in
Figures 5.10 and 5.11. In Figure 5.10, the monotonic property of the transform-
ation holds for y < y 1 , and y > y 2 , and Equation (5.12) can be used to
determine the pdf of Y in these intervals of y. For y 1 y 2 y , however, we
must start from the beginning and consider F Y (y) P(Y y). The region
defined by Y y in the range space R Y covers the heavier portions of the
function y g(x), as shown in Figure 5.10. Thus:
1
1
1
F Y
y P
Y y PX g
y Pg
y < X g
y
1 2 3
1
1
1
PX g
y PX g
y
PX g
y
5:21
3
2
1
1
1
1
F X g
y F X g
y
F X g
y; y 1 y y 2 ;
1 3 2
1
1
1
where x 1 g y), x 2 g y),and x 3 g y) are roots for x of function
1 2 3
( ) in terms of . y
y g x
As before, the relationship between the pdfs of X and Y is found by differ-
entiating Equation (5.21) with respect to y. It is given by
1
1
1
dg
y dg
y dg
y
1
1
1
f
y f g
y 1 dy f g
y 3 dy
f g
y 2 dy ; y 1 y y 2 :
3
X
Y
X
X
1
2
5:22
TLFeBOOK