Page 146 - Fundamentals of Probability and Statistics for Engineers
P. 146

Functions of Random Variables                                   129

                                    y





                                  y
                                   2     y =g(x)
                                  y
                                  y
                                   1
                                                                           x
                          x = g (y)    x = g (y)            x = g (y)
                                           –1
                                                                –1
                              –1
                           1  1         2  2                 3  3

                    Figure 5.10  An example of nonmonotonic function  y   g (x)


                                                               ˆ
             In the examples given above, it is easy to verify that all density functions
           obtained satisfy the required properties.
             Let us now turn our attention to a more general case where function
           Y ˆ  g(X )  is  not  necessarily  strictly  monotonic.  Two  examples  are  given  in
           Figures 5.10 and 5.11. In Figure 5.10, the monotonic property of the transform-
           ation  holds  for  y <  y 1 , and y > y 2 ,  and  Equation  (5.12)  can  be  used  to
           determine the pdf of Y  in these intervals of y. For y 1    y    2 y  , however, we
           must  start  from  the  beginning  and  consider  F Y  (y) ˆ  P(Y    y).  The  region
           defined  by Y    y in  the range space R Y covers the heavier portions of the
           function y ˆ  g(x), as shown in Figure 5.10. Thus:

                                   
1
                                             
1
                                                         
1
           F Y …y†ˆ P…Y   y†ˆ P‰X   g …y†Š ‡ P‰g …y† < X   g …y†Š
                                   1         2           3
                                   
1
                                                 
1
                                                               
1
                          ˆ P‰X   g …y†Š ‡ P‰X   g …y†Š 
 P‰X   g …y†Š   …5:21†
                                                 3
                                                               2
                                   1
                                                      
1
                                           
1
                                
1
                          ˆ F X ‰g …y†Š ‡ F X ‰g …y†Š 
 F X ‰g …y†Š;  y 1   y   y 2 ;
                                1          3          2
                                                 
1
                                 
1
                      
1
           where x 1 ˆ g  y), x 2 ˆ g  y),and x 3 ˆ g  y)  are roots for  x  of function
                      1          2               3
               ( ) in terms of . y
           y  ˆ g x
             As before, the relationship between the pdfs of X  and Y  is found by differ-
           entiating Equation (5.21) with respect to y. It is given by
                            
1
                                             
1
                                                             
1
                          dg …y†           dg …y†          dg …y†
                                                      
1
                                      
1
                     
1
           f …y†ˆ f ‰g …y†Š  1 dy  ‡ f ‰g …y†Š  3 dy  
 f ‰g …y†Š  2 dy  ;  y 1   y   y 2 :
                                      3
                                   X
            Y
                  X
                                                    X
                     1
                                                      2
                                                                         …5:22†
                                                                            TLFeBOOK
   141   142   143   144   145   146   147   148   149   150   151