Page 149 - Fundamentals of Probability and Statistics for Engineers
P. 149
132 Fundamentals of Probability and Statistics for Engineers
For all y, Equation (5.25) yields
2
1
X dg
y
j
1
f
y f g
y
Y
j
j1 dy
1 1 1 1
5:26
2 1 y 2 2 1 y 2
1
;
1 < y < 1;
2
1 y
a result identical to the solution for Example 5.4 [see Equation (5.18)].
2
Example 5.7. Problem: determine the pdf of Y X where X is normally
distributed according to
1
x =2
2
f
x e ;
1 < x < 1:
5:27
X 1=2
2
As shown in Figure 5.13, f Y (y) 0 for y < 0 since the transformation
equation has no real roots in this range. For y 0, the two roots of
2
y x are
1
x 1;2 g
y y 1=2 :
1;2
y
2
y = x
y
x
x = –√y x = √y
1
2
Figure 5.13 Transformation y x 2
TLFeBOOK