Page 149 - Fundamentals of Probability and Statistics for Engineers
P. 149

132                    Fundamentals of Probability and Statistics for Engineers

           For all y, Equation (5.25) yields

                                     2             
1
                                    X             dg …y†
                                                   j
                                           
1
                             f …y†ˆ    f ‰g …y†Š
                              Y

                                           j
                                    jˆ1            dy

                                     1    1       1    1                 …5:26†
                                  ˆ            ‡
                                    2  1 ‡ y 2   2  1 ‡ y 2
                                       1
                                  ˆ         ;  
1 < y < 1;
                                          2
                                     …1 ‡ y †
           a result identical to the solution for Example 5.4 [see Equation (5.18)].
                                                          2
             Example 5.7. Problem: determine the pdf of Y ˆ  X where  X  is  normally





           distributed according to
                                     1    
x =2
                                            2
                           f …x†ˆ        e    ;  
1 < x < 1:             …5:27†
                            X         1=2
                                   …2 †
           As  shown  in  Figure  5.13,  f Y  (y) ˆ  0  for  y <  0  since  the  transformation
           equation  has  no  real  roots  in  this  range.  For  y    0,  the  two  roots  of
               2
           y ˆ  x are
                                         
1
                                   x 1;2 ˆ g …y†ˆ y 1=2 :
                                         1;2
                                          y

                                                          2
                                                      y = x





                                         y




                                                                      x
                                 x = –√y       x =  √y
                                                1
                                  2
                              Figure 5.13 Transformation y ˆ  x 2








                                                                            TLFeBOOK
   144   145   146   147   148   149   150   151   152   153   154