Page 153 - Fundamentals of Probability and Statistics for Engineers
P. 153
136 Fundamentals of Probability and Statistics for Engineers
Upon evaluating Y (t), the moments of Y are given by [Equation (4.52)]:
n
n
n
EfY g j
0; n 1; 2; ... :
5:33
Y
Example 5.9. Problem: a random variable X is discrete and its pmf is given in
Example 5.1. Determine the mean and variance of Y where Y 2X 1.
Answer: using the first of Equations (5.31), we obtain
X
EfYg Ef2X 1g
2x i 1p
x i
X
i
1 1 1 1
1
1
3
5
5:34
2 4 8 8
3
;
4
2
2
2
EfY g Ef
2X 1 g X
2x i 1 p
x i
X
i
1 1 1 1
5:35
1
1
9
25
2 4 8 8
5;
and
3
2 71
2
2
2
EfY g
E fYg 5
:
5:36
Y
4 16
Following the second approach, let us use the method of characteristic func-
tions described by Equations (5.32) and (5.33). The characteristic function of Y is
X jt
2x i 1
Y
t e p
x i
X
i
1 jt 1 3jt 1 5jt 1
jt
e e e e
2 4 8 8
1
jt jt 3jt 5jt
4e 2e e e ;
8
and we have
3
j
1
1
EfYg j
0 j
1
4 2 3 5 ;
Y
8 4
1
2
2
EfY g
0
4 2 9 25 5:
Y
8
TLFeBOOK