Page 148 - Fundamentals of Probability and Statistics for Engineers
P. 148

Functions of Random Variables                                   131

           where r is the number of roots for x of equation y ˆ  g(x). Clearly, Equation
           (5.12) is contained in this theorem as a special case (r ˆ  1).
             Example 5.6. Problem: in Example 5.4, let random variable    now be uni-
           formly distributed over the interval 
  <   <  . Determine the pdf of
           Y ˆ  t an .
             Answer: the pdf of    is now
                                    8
                                       1
                                    <    ;  for 
 < < ;
                             f … †ˆ   2

                                      0;  elsewhere;
                                    :
           and the relevant portion of the transformation equation is plotted in
           Figure 5.12. For each y, the two roots   1  and  2  of y   ˆ  tan    are (see Figure
           5.12)
                                                         9
                                     
1
                           
1
                       1 ˆ g …y†ˆ tan  y;  for 
         >
                           1                     <  1   0 >
                                                2        =
                                                           ;  y   0;
                                                         >
                           
1
                                     
1
                       2 ˆ g …y†ˆ tan  y;  for           >
                           2                    <  2     ;
                                              2
                                                     9
                             
1
                       1 ˆ tan  y;                  >
                                                  2  =
                                   for 
  <  1  
 >
                                                     ;  y > 0:
                                                    >
                             
1
                       2 ˆ tan  y;  for 0 <  2      >
                                                    ;
                                              2
                                          y
                                         y

                                                                  φ
                                                     π
                                    π
                     –  π    φ    –  —        φ     —        π
                             1      2          2     2






                             Figure 5.12  Transformation y ˆ  tan








                                                                            TLFeBOOK
   143   144   145   146   147   148   149   150   151   152   153