Page 151 - Fundamentals of Probability and Statistics for Engineers
P. 151

134                    Fundamentals of Probability and Statistics for Engineers

           where
                             g…V 1 †ˆ 0;  V 1 < 95;

                                    V 1 
 95
                             g…V 1 †ˆ      ;  95   V 1   105;
                                       10
                             g…V 1 †ˆ 1;  V 1 > 105:

             The theorems stated in this section do not apply in this case to the portions
           v 1  < 95 V and v 1  >  105 V because infinite and noncountable number of roots
           for v 1 exist in these regions. However, we deduce immediately from Figure 5.14
           that

                                                     …95†
                          P…V 2 ˆ 0†ˆ P…V 1   95†ˆ F V 1
                                      Z  95         1
                                   ˆ     f V 1 …v 1 †dv 1 ˆ ;
                                       90           4
                                                         …105†
                          P…V 2 ˆ 1†ˆ P…V 1 > 105†ˆ 1 
 F V 1
                                      1
                                   ˆ :
                                      4
           For the middle portion, Equation (5.7) leads to

                                         
1
                                       ‰g …v 2 †Š
                           F V 2  …v 2 †ˆ F V 1
                                       …10v 2 ‡ 95†;  0 < v 2 < 1:
                                  ˆ F V 1
           Now,

                                      v 1 
 90
                                …v 1 †ˆ     ;  90   v 1   110:
                             F V 1
                                        20
           We thus have

                              1                  2v 2 ‡ 1
                        …v 2 †ˆ  …10v 2 ‡ 95 
 90†ˆ    ;  0 < v 2 < 1:
                     F V 2
                              20                   4
                        (v 2 ), is shown in Figure 5.15, an example of a mixed distribution.
             The PDF, F V 2


           5.1.2  MOMENTS

           Having developed methods of determining the probability distribution of
           Y ˆ  g(X ), it is a straightforward matter to calculate all the desired moments








                                                                            TLFeBOOK
   146   147   148   149   150   151   152   153   154   155   156