Page 229 - Fundamentals of Water Treatment Unit Processes : Physical, Chemical, and Biological
P. 229

184                            Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and Biological



            PROBLEMS                                           8.6 Dissolved Air Concentration in Saturator Using
                                                                   H(air)
            8.1 History                                            Let the context of the problem be a saturator, with air as
               Problem                                             the gas, and 700 kPa total pressure imposed.
               Summarize the difference between the state-of-the-art of  Given
               flotation c. 1959 and in the 1990s (or other dates if you   T ¼ 208C
               wish). Cite one or two papers for each period.
                                                                      H(air) ¼ H(O 2 )   X(O 2 ) þ H(N 2 )   X(N 2 )
            8.2 System Description
                                                                            ¼ 43:49 mgO 2 =L=atm   0:209 þ 19:01 mg
               Problem
                                                                              N 2 =L=atm   0:78084
               Summarize the flotation process, identifying key phases.
            8.3 Dissolved Oxygen Concentration in Saturator by              ¼ 23:93 mg air=L=atm
               Henry’s Law                                                  ¼ 0:0002362 (kg air dissolved=m 3
               The problem refers to a saturator; air is the gas, with 700
                                                                              water=kPa air)
               kPa total pressure imposed. Let f ¼ 1.0 for the purpose of
               the calculation. Reference is Section 8.3.1.           X(air) ¼ 1:00 mol air=mol air
                                                                     P(total) ¼ 700 kPa
               Given
                                                                    Required
                    T ¼ 208C
                                                   3
                H(O 2 ) ¼ 0.000428 (kg oxygen dissolved=m water=kPa  Calculate the concentration of dissolved air at equilib-
                                                                    rium by Henry’s law.
                       oxygen) at 208C
                                                                8.7 Condition for Gas Precipitation
                 X(O 2 ) ¼ 0.209 mol O 2 =mole air (Table B.7, Compos-
                        ition of Air)                               Given
               P(total) ¼ 700 kPa (stated)                          Consider a flotation basin at sea level and T ¼ 208C,
                                                                    . Atmospheric pressure, P(atm) ¼ 101.325 kPa (1.00
               Required
                                                                      atm)
               Calculate the concentration of dissolved oxygen at equi-  .  Let nozzle depth below water surface, d(noz) ¼ 3.0 m
               librium by Henry’s law.
                                                                      (9.84 ft)
            8.4 Dissolved Nitrogen Concentration in Saturator by    . Let f   0.9 (saturator efficiency)
               Henry’s law
                                                                    Required
               The problem refers to a saturator; air is the gas, with 700
                                                                    Determine the minimum saturator pressure for gas pre-
               kPa total pressure imposed. Let f ¼ 1.0 for the purpose of
                                                                    cipitation in a flotation basin.
               the calculation.
                                                                8.8 Separation Zone: Rise Velocity, v pb , and SOR
               Given
                                                                    Reference is Section 8.3.4.
                    T ¼ 208C                                        Given
                H(N 2 ) ¼ 19.01 (mg nitrogen dissolved=L water=atm  B ¼ 10 bubbles=particle
                        nitrogen)                                   d b ¼ 40 mm
                                                   3
                      ¼ 0.0190 (kg nitrogen dissolved=m water=atm   d p ¼ 50 mm
                        nitrogen)                                   T ¼ 208C
                                                      3
                                                                                3
                                                                                             3
                      ¼ 0.0001875 (kg nitrogen dissolved=m water=   r p ¼ 1.01 g=cm [ ¼ 1010 kg=m ]
                        kPa nitrogen)
                                                                    Required
                 X(N 2 ) ¼ 0.78084 mol N 2 =mole air
                                                                    Calculate the of rise velocity, v pb , of a particle–bubble
               P(total) ¼ 700 kPa
                                                                    agglomerate for conditions stated.
               Required                                         8.9 Separation Zone: A=S ratio from Bubble-Particle
               Calculate the concentration of dissolved N 2 at equilib-  Ratio
               rium by Henry’s law.                                 Reference is Section 8.3.4.
            8.5 Dissolved Air Concentration in Saturator by Henry’s  Given
               Law
               Given
                                                                    d p ¼ 50 mm             r ¼ 0.10
               Let T ¼ 208C, P(saturator) ¼ 700 kPa, which results in
                                            3                       N p ¼ 17000 #=mL        C(saturator) ¼ 0.136 kg
               C(O 2 ) ¼ 0.0628 kg dissolved O 2 =m water and C(N 2 ) ¼                         3
                                      3                                                      air=m water
               0.10248 kg dissolved N 2 =m water. Let f ¼ 1.0 for the
                                                                                     3
                                                                    r(floc) ¼ 1010 kg solids=m water  Table CD8.3
               purpose of the calculation.
               Required
               Calculate the concentration of ‘‘air’’ leaving the   Required
               saturator.                                           Calculate the air-to-solids ratio, i.e., A=S.
   224   225   226   227   228   229   230   231   232   233   234