Page 224 - Fundamentals of Water Treatment Unit Processes : Physical, Chemical, and Biological
P. 224

Flotation                                                                                        179



            8.3.5.2  Mass Balance Calculations by Spreadsheet         (2) Recalling F b ¼ C r =r(air), calculate C r from (8.16),
            Table CD8.3 shows the sequence of calculations that permit
                                                                                         F b
            determination of P(saturator) for various r. The algorithm             N b ¼  pd =6          (8:16)
                                                                                          3
                                                                                          b
            utilizes the materials balance equation as basis for calculating
                                                                                                        3
            the required C r . The spreadsheet is set up to permit the       11  bubbles  C r =(1:204 kg air=m air)
                                                                       1:2   10       ¼
                                                                                3
                                                                                                    3
            exploration of ‘‘what-if’’ scenarios, with respect to tempera-    m water   [p(40   10  6  m) =6]=bubble
            ture, elevation, N p , B, and r. Note that the best-fit polynomial  C r ¼ 4:785   10  3  kg air=m water
                                                                                            3
            equations for the effect of temperature on H(O 2 ) and H(N 2 ),
            from Table H.5, was applied to approximate H(air, T).   7. Determine C(saturator):
                                                                      From the mass balance Equation 8.20, with argu-
                                                                      ments,  C r ¼ 4.785   10  3  kg=m 3  and  r ¼ 0.10,
              Example 8.7 Rational Design                             C(saturator) is calculated,
              The purpose of this example is to illustrate a design algo-  r[C(saturator)   C a ]   (C a   C o )
              rithm based on theory, as described in the previous sec-  C r ¼
              tions. A similar algorithm is used in Table CD8.3.               3    (1 þ r)
                                                                      4:785   10
              Given
                                                                          0:10   [C(saturator)   0:031]   (0:031   0:024)
                                                                        ¼
                       3
              Q ¼ 0.0876 m =s (2.0 mgd)  Recycle ratio, r ¼ 0.10                        (1 þ 0:10)
              d P ¼ 50 mm (average)  Saturator efficiency, f ¼ 0.9             3
                                                                      5:26   10  ¼ 0:10   [C(saturator)   0:031]
              d b ¼ 40            Elevation ¼ sea level, i.e., Z ¼ 0.00 m
                      4
              N P ¼ 1.2   10 particles=mL  T ¼ 208C                                (0:031   0:024)
                                                                      0:0526 ¼ [C(saturator)   0:031]   0:07
              B ¼ 10 bubbles=particle
                                                                      0:0526 ¼ C(saturator)   0:101
                                                                                             3
              Required                                                C(saturator) ¼ 0:154 kg air=m water
              A(basin), P(sat)
                                                                    8. Note that C a and C o in Equation 8.20 are calculated
              Solution                                                as follows:
                 1. Determine average rise velocity of particle–bubble  Assume D(nozzles) ¼ 3.0 m; therefore, C a is cal-
                   combination:                                       culated by Henry’s law, i.e.,
                   v pb (10 bubbles=particle, d p ¼ 50 mm) ¼ 13.7 m=h
                   (Table CD8.2)                                      C a ¼ H(air)   [P(atm) þ (D(nozzle)=10:33 m)
                 2. Determine area of separation zone, i.e., A(basin)        (101:325 kPa)]
                   .  Enter Figure 8.10 with arguments, d p ¼ 50 mm,  C a ¼ (0:000238 kg air=m water=kPa air)
                                                                                          3
                     B ¼ 10 bubbles=particle to obtain, v o ¼ 13.7
                     m=h ¼ 0.0038 m=s                                        [(101:325   2:338) kPa þ (3:00 m=10:33 m)
                   .  Calculate A(basin):                                    (101:325 kPa)]
                                                                                      3
                                                                         ¼ 0:031 kg air=m water
                                        Q
                                     A(basin)                         Also, calculate C o by Henry’s law, i.e.,
                                 v o ¼
                                             3
                                     0:0876 m =s
                                       A(basin)
                         0:0038 m=s ¼                               C o ¼ H(air)   [P(atm)   vapor pressure]
                                                                                        3
                            A(basin) ¼ 23:0m 2                         ¼ (0:000238 kg air=m water=kPa air)
                                                                           [(101:325   2:338) kPa]
                 3. Proportion length to width; let L=w   10:1, i.e.,                        3
                                                                       ¼ 0:0236 ¼ 0:3056 kg air=m water  (Ex8:7:1)
                                 w(basin) ¼ 2.0 m
                                 L(basin) ¼ 12.0 m                  9. The saturator pressure, P(saturator) is also calculated
                 4. Depth                                             by Henry’s law, i.e.,
                   From experience, depth is about 3–5m; let D ¼ 3.0 m.
                 5. Detention time, u:                                     CðsaturatorÞ¼ f   H(air)   P(saturator)
                                                                               3
                                                                   0:154 kg air=m water ¼ 0:9   (0:000238 kg air=m 3
                               2
                   V ¼ 3m   24:0m ¼ 72:0m 3                                            water=kPa air)   P(saturator)
                                          3
                                 3
                   u ¼ V=Q ¼ 72:0m =0:0876m =s ¼ 822s ¼ 14min               P(saturator) ¼ 719 kPa absolute
                                                                                     ¼ 618 kPa gage
                 6. Determine C r :
                   (1) Calculate N b for N b =N p ¼ B ¼ 10,
                                                                  Comment
                                                                  The value for v o ¼ 13.7 m=h compares with the range for
                                 N b
                                           ¼ 10
                          1:2   10 particles=mL                   practice, 0.05   v o   100 m=h (Table 8.2). The value for
                                4
                                                                  P(saturator)¼ 618 kPa gage is at the upper end of the range
                                    5
                          N b ¼ 1:2   10 bubbles=mL               for practice, 300   P(sat)   600 kPa gage (Table 8.4).
   219   220   221   222   223   224   225   226   227   228   229