Page 198 - Glucose Monitoring Devices
P. 198

200    CHAPTER 9 Calibration of CGM systems




                         [31] Kuure-Kinsey M, Palerm CC, Bequette BW. A dual-rate Kalman filter for continuous
                             glucose monitoring. Conference Proceedings IEEE Engineering in Medicine and
                             Biology 2006;1:63e6.
                         [32] Facchinetti A, Sparacino G, Cobelli C. Enhanced accuracy of continuous glucose moni-
                             toring by online extended Kalman filtering. Diabetes Technology and Therapeutics
                             2010;12(5):353e63.
                         [33] Leal Y, Garcia-Gabin W, Bondia J, Esteve E, Ricart W, Fernandez Real JM, Vehi J.
                             Real-time glucose estimation algorithm for continuous glucose monitoring using autor-
                             egressive models. Journal of Diabetes Science and Technology 2010;4(2):391e403.
                         [34] Leal Y, Garcia-Gabin W, Bondia J, Esteve E, Ricart W, Ferna ´ndez Real JM, Vehı ´ J.
                             Enhanced algorithm for glucose estimation using the continuous glucose monitoring
                             system. Medical Science Monitor 2010;16(6):51e8.
                         [35] Barcelo ´-Rico F, Bondia J, Dı ´ez JL, Rossetti P. A multiple local models approach to ac-
                             curacy improvement in continuous glucose monitoring. Diabetes Technology and Ther-
                             apeutics 2012;14(1):74e82.
                         [36] Barcelo-Rico F, Diez JL, Rossetti P, Vehi J, Bondia J. Adaptive calibration algorithm for
                             plasma glucose estimation in continuous glucose monitoring. IEEE Journal of Biomed-
                             ical and Health Informatics 2013;17(3):530e8.
                         [37] Mahmoudi Z, Johansen MD, Christiansen JS, Hejlesen OK. A multistep algorithm for
                             processing and calibration of microdialysis continuous glucose monitoring data. Dia-
                             betes Technology and Therapeutics 2013;15(10):825e35.
                         [38] Kirchsteiger H, Zaccarian L, Renard E, Del Re L. A novel online recalibration strategy
                             for continuous glucose measurement sensors employing LMI techniques. Conference
                             Proceedings IEEE Engineering in Medicine and Biology 2013;1:3921e4.
                         [39] Kirchsteiger H, Zaccarian L, Renard E, Del Re L. LMI-based approaches for the cali-
                             bration of continuous glucose measurement sensors. IEEE Journal of Biomedical and
                             Health Informatics 2015;19(5):1697e706.
                         [40] Guerra S, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C. Enhancing the accuracy
                             of subcutaneous glucose sensors: a real-time deconvolution-based approach. IEEE
                             Transactions on Biomedical Engineering 2012;59(6):1658e69.
                         [41] De Nicolao G, Sparacino G, Cobelli C. Nonparametric input estimation in physiological
                             systems: problems, methods, and case studies. Automatica 1997;33(5):851e70.
                         [42] Vettoretti M, Facchinetti A, Del Favero S, Sparacino G, Cobelli C. Online calibration of
                             glucose sensors from the measured current by a time-varying calibration function and
                             Bayesian priors. IEEE Transactions on Biomedical Engineering 2016;63(8):1631e41.
                         [43] Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. From two to one per
                             day calibration of Dexcom G4 Platinum by a time-varying day-specific Bayesian prior.
                             Diabetes Technology and Therapeutics 2016;18(8):472e9.
                         [44] Lee JB, Dassau E, Doyle FJ. A run-to-run approach to enhance continuous glucose
                             monitor accuracy based on continuous wear. IFACPapersOnLine 2015;48(20):237e42.
                         [45] Zavitsanou S, Lee JB, Pinsker JE, Church MM, Doyle FJ, Dassau E. A personalized
                             week-to-week updating algorithm to improve continuous glucose monitoring
                             performance. Journal of Diabetes Science and Technology 2017;11(6):1070e9.
                         [46] Magni P, Sparacino G. Parameter estimation. In: Carson E, Cobelli C, editors. Modeling
                             methodology for physiology and medicine. 2nd ed. Oxford: Elsevier; 2013.
                         [47] Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. Reduction of blood
                             glucose measurements to calibrate subcutaneous glucose sensors: a Bayesian multiday
                             framework. IEEE Transactions on Biomedical Engineering 2018;65(3):587e95.
   193   194   195   196   197   198   199   200   201   202   203