Page 198 - Glucose Monitoring Devices
P. 198
200 CHAPTER 9 Calibration of CGM systems
[31] Kuure-Kinsey M, Palerm CC, Bequette BW. A dual-rate Kalman filter for continuous
glucose monitoring. Conference Proceedings IEEE Engineering in Medicine and
Biology 2006;1:63e6.
[32] Facchinetti A, Sparacino G, Cobelli C. Enhanced accuracy of continuous glucose moni-
toring by online extended Kalman filtering. Diabetes Technology and Therapeutics
2010;12(5):353e63.
[33] Leal Y, Garcia-Gabin W, Bondia J, Esteve E, Ricart W, Fernandez Real JM, Vehi J.
Real-time glucose estimation algorithm for continuous glucose monitoring using autor-
egressive models. Journal of Diabetes Science and Technology 2010;4(2):391e403.
[34] Leal Y, Garcia-Gabin W, Bondia J, Esteve E, Ricart W, Ferna ´ndez Real JM, Vehı ´ J.
Enhanced algorithm for glucose estimation using the continuous glucose monitoring
system. Medical Science Monitor 2010;16(6):51e8.
[35] Barcelo ´-Rico F, Bondia J, Dı ´ez JL, Rossetti P. A multiple local models approach to ac-
curacy improvement in continuous glucose monitoring. Diabetes Technology and Ther-
apeutics 2012;14(1):74e82.
[36] Barcelo-Rico F, Diez JL, Rossetti P, Vehi J, Bondia J. Adaptive calibration algorithm for
plasma glucose estimation in continuous glucose monitoring. IEEE Journal of Biomed-
ical and Health Informatics 2013;17(3):530e8.
[37] Mahmoudi Z, Johansen MD, Christiansen JS, Hejlesen OK. A multistep algorithm for
processing and calibration of microdialysis continuous glucose monitoring data. Dia-
betes Technology and Therapeutics 2013;15(10):825e35.
[38] Kirchsteiger H, Zaccarian L, Renard E, Del Re L. A novel online recalibration strategy
for continuous glucose measurement sensors employing LMI techniques. Conference
Proceedings IEEE Engineering in Medicine and Biology 2013;1:3921e4.
[39] Kirchsteiger H, Zaccarian L, Renard E, Del Re L. LMI-based approaches for the cali-
bration of continuous glucose measurement sensors. IEEE Journal of Biomedical and
Health Informatics 2015;19(5):1697e706.
[40] Guerra S, Facchinetti A, Sparacino G, De Nicolao G, Cobelli C. Enhancing the accuracy
of subcutaneous glucose sensors: a real-time deconvolution-based approach. IEEE
Transactions on Biomedical Engineering 2012;59(6):1658e69.
[41] De Nicolao G, Sparacino G, Cobelli C. Nonparametric input estimation in physiological
systems: problems, methods, and case studies. Automatica 1997;33(5):851e70.
[42] Vettoretti M, Facchinetti A, Del Favero S, Sparacino G, Cobelli C. Online calibration of
glucose sensors from the measured current by a time-varying calibration function and
Bayesian priors. IEEE Transactions on Biomedical Engineering 2016;63(8):1631e41.
[43] Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. From two to one per
day calibration of Dexcom G4 Platinum by a time-varying day-specific Bayesian prior.
Diabetes Technology and Therapeutics 2016;18(8):472e9.
[44] Lee JB, Dassau E, Doyle FJ. A run-to-run approach to enhance continuous glucose
monitor accuracy based on continuous wear. IFACPapersOnLine 2015;48(20):237e42.
[45] Zavitsanou S, Lee JB, Pinsker JE, Church MM, Doyle FJ, Dassau E. A personalized
week-to-week updating algorithm to improve continuous glucose monitoring
performance. Journal of Diabetes Science and Technology 2017;11(6):1070e9.
[46] Magni P, Sparacino G. Parameter estimation. In: Carson E, Cobelli C, editors. Modeling
methodology for physiology and medicine. 2nd ed. Oxford: Elsevier; 2013.
[47] Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G, Cobelli C. Reduction of blood
glucose measurements to calibrate subcutaneous glucose sensors: a Bayesian multiday
framework. IEEE Transactions on Biomedical Engineering 2018;65(3):587e95.