Page 197 - Glucose Monitoring Devices
P. 197
References 199
[16] Kamath A, Simpson P, Brauker J, Goode PV. Calibration techniques for a continuous
analyte sensor. Available from: https://patents.google.com/patent/US8386004
[Accessed 11 12 2018].
[17] Budiman E. Method and device for providing offset model based calibration for analyte
sensor. Available from: https://patents.google.com/patent/US8224415. [Accessed 11 12
2018].
[18] Choleau C, Klein JC, Reach G, Aussedat B, Demaria-Pesce D, Wilson GS, Gifford R,
Ward WK. Calibration of a subcutaneous amperometric glucose sensor implanted for
7 days in diabetic patients: part 2. Superiority of the one-point calibration method. Bio-
sensors and Bioelectronics 2002;17(8):647e54.
[19] Mahmoudi Z, Johansen MD, Christiansen JS, Hejlesen O. Comparison between one-
point calibration and two-point calibration approaches in a continuous glucose moni-
toring algorithm. Journal of Diabetes Science and Technology 2014;8(4):709e19.
[20] Rebrin K, Steil GM, Van Antwerp WP, Mastrototaro JJ. Subcutaneous glucose predicts
plasma glucose independent of insulin: implications for continuous monitoring. Amer-
ican Journal of Physiology 1999;277(3):561e71.
[21] Schiavon M, Dalla Man C, Dube S, Slama M, Kudva YC, Peyser T, Basu A, Basu R,
Cobelli C. Modeling plasma-to-interstitium glucose kinetics from multitracer plasma
and microdialysis data. Diabetes Technology and Therapeutics 2015;17(11):825e31.
[22] Keenan DB, Mastrototaro JJ, Voskanyan G, Steil GM. Delays in minimally invasive
continuous glucose monitoring devices: a review of current technology. Journal of Dia-
betes Science and Technology 2009;33(55):1207e14.
[23] Rebrin K, Sheppard NF, Steil GM. Use of subcutaneous interstitial fluid glucose to es-
timate blood glucose: revisiting delay and sensor offset. Journal of Diabetes Science and
Technology 2010;4(5):1087e98.
[24] Facchinetti A, Sparacino G, Cobelli C. Reconstruction of glucose in plasma from inter-
stitial fluid continuous glucose monitoring data: role of sensor calibration. Journal of
Diabetes Science and Technology 2007;1(5):617e23.
[25] Helton KL, Ratner BD, Wisniewski NA. Biomechanics of the sensor-tissue interfaced
effects of motion, pressure, and design on sensor performance and the foreign body
responsedPart I: theoretical framework. Journal of Diabetes Science and Technology
2011;5(3):632e46.
[26] Klueh U, Liu Z, Feldman B, Henning TP, Cho B, Ouyang T, Kreutzer D. Metabolic
biofouling of glucose sensors in vivo: role of tissue microhemorrhages. Journal of Dia-
betes Science and Technology 2011;5(3):583e95.
[27] Diabetes Research In Children Network (Direcnet) Study Group, Buckingham BA,
Kollman C, Beck R, Kalajian A, Fiallo-Scharer R, Tansey MJ, Fox LA, Wilson DM,
Weinzimer SA, Ruedy KJ, Tamborlane WV. Evaluation of factors affecting CGMS
calibration. Diabetes Technology and Therapeutics 2006;8(3):318e25.
[28] Aussedat B, Thome ´-Duret V, Reach G, Lemmonier F, Klein JC, Hu Y, Wilson GS.
A user-friendly method for calibrating a subcutaneous glucose sensor-based hypogly-
caemic alarm. Biosensors and Bioelectronics 1997;12(11):1061e71.
[29] Knobbe EJ, Lim WL, Buckingham BA. Method and apparatus for real-time estimation
of physiological parameters. Available from: https://patents.google.com/patent/
US6572545B2/en. [Accessed 11 12 2018].
[30] Knobbe EJ, Buckingham B. The extended Kalman filter for continuous glucose
monitoring. Diabetes Technology and Therapeutics 2005;7(1):15e27.