Page 709 - Handbook Of Integral Equations
P. 709

2 1/2
                                      2
                 Integrals containing (a – x )  .
                                                   2
                                    1   2   2 1/2  a      x
                           2 1/2
                        2
               32.    (a – x )  dx =  x(a – x )  +   arcsin  .
                                    2              2      a
                                       1  2   2 3/2

                             2 1/2
                         2
               33.    x(a – x )  dx = – (a – x )  .
                                       3

                                    1             3               3        x
                                                            2 1/2
                           2 3/2
                                                                     4
                        2
                                                        2
                                        2
                                            2 3/2
                                                     2
               34.    (a – x )  dx =  x(a – x )  +  a x(a – x )  +  a arcsin  .
                                    4             8               8        a
                                                          2   2 1/2
                       1  2   2 1/2     2   2 1/2     a +(a – x )
               35.      (a – x )  dx =(a – x )  – a ln             .

                       x                                   x
                         dx           x

               36.     √       = arcsin  .
                         2
                        a – x 2       a
                        xdx        2   2 1/2

               37.     √       = –(a – x )  .
                         2
                        a – x 2

                                          2
                                              2 –1/2
                                      –2
                        2
                           2 –3/2
               38.    (a – x )  dx = a x(a – x )  .
                 Reduction formulas. The parameters a, b, p, m, and n below can assume arbitrary values,
               except for those at which denominators vanish in successive applications of a formula. Notation:
                     n
               w = ax + b.
                                          1
                            n
                                p
                                                                m
                       m
                                                      p
               39.    x (ax + b) dx =            x m+1 w + npb  x w p–1  dx .
                                      m + np +1
                                          1      m+1  p+1                  m  p+1

                       m
                            n
                                p
               40.    x (ax + b) dx =          –x   w   +(m + n + np +1)  x w    dx .
                                      bn(p +1)
                                         1
                            n
                       m
                                p
                                                                                p
               41.    x (ax + b) dx =          x m+1 w p+1  – a(m + n + np +1)  x m+n w dx .
                                      b(m +1)
                                           1         m–n+1  p+1            m–n  p

                                p
                           n
                       m
               42.    x (ax + b) dx =              x    w    –b(m – n +1) x   w dx .
                                      a(m + np +1)
               2.3. Integrals Containing Exponential Functions
                             1  ax

                      ax
               1.    e  dx =  e .
                             a
                             a x
                      x
               2.    a dx =     .
                            ln a

                                    x  1
               3.    xe ax  dx = e ax  –  .
                                  a   a 2
                                    2
                                    x   2x   2
                      2 ax
               4.    x e  dx = e ax   –   +     .
                                   a    a 2  a 3

                                    1   n      n(n – 1)             n!        n!
                                     n
                      n ax
               5.    x e   dx=e ax  x –   x n–1 +     x n–2 –···+(–1) n–1  x+(–1) n  ,  n=1, 2, ...
                                  a    a 2       a 3                a n      a n+1
                                     n
                                        (–1) k  d k
               6.    P n (x)e ax  dx=e ax       P n (x), where P n (x) is an arbitrary nth-degree polynomial.
                                        a k+1  dx k
                                    k=0

                        dx     x   1         px
               7.            =   –    ln |a + be |.
                      a + be px  a  ap
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 693
   704   705   706   707   708   709   710   711   712   713   714