Page 710 - Handbook Of Integral Equations
P. 710


                                       1         px  a
                                         arctan e            if ab >0,
                                   √
                          dx         p ab            b
                                  
               8.                =                 px  √
                      ae px  + be –px    1    b + e   –ab
                                  
                                       √    ln       √        if ab <0.
                                  
                                     2p –ab    b – e px  –ab
                                          √
                                                   √
                                    1      a + be px  –  a
                                
                                 √ ln √
                                                        if a >0,
                         dx       p a     a + be px  +  a
                                                    √
               9.     √        =              √
                       a + be px    2          a + be px
                                 √     arctan  √        if a <0.
                                
                                   p –a           –a
                                
               2.4. Integrals Containing Hyperbolic Functions
                 Integrals containing cosh x.

                                    1
               1.    cosh(a + bx) dx =  sinh(a + bx).
                                    b

               2.    x cosh xdx = x sinh x – cosh x.

                      2
                                   2
               3.    x cosh xdx =(x + 2) sinh x – 2x cosh x.
                                        n    2k          2k–1
                                            x           x
                      2n
               4.    x  cosh xdx =(2n)!         sinh x –       cosh x .
                                           (2k)!       (2k – 1)!
                                       k=1
                                            n
                                                 x 2k+1        x 2k
               5.    x 2n+1  cosh xdx =(2n + 1)!       sinh x –    cosh x .
                                                (2k + 1)!     (2k)!
                                            k=0

                                   p
                      p
               6.    x cosh xdx = x sinh x – px p–1  cosh x + p(p – 1)  x p–2  cosh xdx.

                         2
                                1
               7.    cosh xdx = x +  1  sinh 2x.
                                2    4

                                            3
                         3
               8.    cosh xdx = sinh x +  1  sinh x.
                                       3
                                               n–1
                                     x     1          sinh[2(n – k)x]
               9.    cosh 2n  xdx = C n  +        C k             ,  n =1, 2, ...
                                  2n  2n   2n–1    2n
                                    2     2             2(n – k)
                                               k=0
                                        n                          n
                                     1      k  sinh[(2n – 2k +1)x]     k  sinh  x
                                                                            2k+1
                          2n+1
               10.    cosh   xdx =        C 2n+1                 =   C n         ,  n =1, 2, ...
                                    2 2n           2n – 2k +1             2k +1
                                       k=0                         k=0

                          p      1          p–1   p – 1     p–2
               11.    cosh xdx =   sinh x cosh  x +      cosh  xdx.
                                 p                 p

                                          1
               12.    cosh ax cosh bx dx =    a cosh bx sinh ax – b cosh ax sinh bx .
                                         2
                                        a – b 2
                         dx     2        ax

               13.            =  arctan e  .
                       cosh ax  a
                                                  n–1
                         dx      sinh x    1            2 (n – 1)(n – 2) ... (n – k)  1
                                                         k
               14.        2n  =            2n–1  +                                  2n–2k–1  ,
                       cosh  x  2n – 1 cosh   x      (2n – 3)(2n – 5) ... (2n – 2k – 1) cosh  x
                                                  k=1
                     n =1, 2, ...
                                                  n–1
                          dx      sinh x   1         (2n – 1)(2n – 3) ... (2n – 2k +1)  1

               15.        2n+1  =           2n  +                                   2n–2k
                                                         k
                       cosh   x    2n   cosh  x         2 (n – 1)(n – 2) ... (n – k)  cosh  x
                                                  k=1
                       (2n – 1)!!
                     +         arctan sinh x,  n =1, 2, ...
                        (2n)!!
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 694
   705   706   707   708   709   710   711   712   713   714   715