Page 712 - Handbook Of Integral Equations
P. 712

Integrals containing tanh x or coth x.

               34.    tanh xdx = ln cosh x.

                          2
               35.    tanh xdx = x – tanh x.

                                       2
                          3
                                  1
               36.    tanh xdx = – tanh x + ln cosh x.
                                  2
                                      n
                                        tanh 2n–2k+1  x
               37.    tanh 2n  xdx = x –           ,    n =1, 2, ...
                                         2n – 2k +1
                                     k=1
                                            n                       n
                                                    k
                                                (–1) C k               tanh 2n–2k+2  x
               38.    tanh 2n+1  xdx = ln cosh x –   2k n  = ln cosh x –          ,  n =1, 2, ...
                                               2k cosh  x              2n – 2k +2
                                            k=1                     k=1
                                    1
                          p
               39.    tanh xdx = –     tanh p–1  x +  tanh p–2  xdx.
                                  p – 1

               40.    coth xdx =ln |sinh x|.

                          2
               41.    coth xdx = x – coth x.

                                       2
                                  1
                          3
               42.    coth xdx = – coth x +ln |sinh x|.
                                  2
                                      n
                                            2n–2k+1
                                        coth      x
                          2n
               43.    coth  xdx = x –              ,  n =1, 2, ...
                                         2n – 2k +1
                                     k=1
                                             n                      n
                                                    k                     2n–2k+2
                                                  C n                  coth     x
                          2n+1
               44.    coth   xdx =ln |sinh x|–       2k  =ln |sinh x|–            ,  n =1, 2, ...
                                               2k sinh  x               2n – 2k +2
                                            k=1                     k=1

                                    1     p–1         p–2
                          p
               45.    coth xdx = –     coth  x +  coth  xdx.
                                  p – 1
               2.5. Integrals Containing Logarithmic Functions

               1.    ln ax dx = x ln ax – x.

                                         2
                                 2
                               1
                                       1
               2.    x ln xdx = x ln x – x .
                               2       4
                                    1               1
                                
                                        p+1              p+1
                                      x   ln ax –      x    if p ≠ –1,
                      p
               3.    x ln ax dx =  p +1          (p +1) 2
                                      2
                                  1  ln ax                  if p = –1.
                                   2

                         2
                                    2
               4.    (ln x) dx = x(ln x) – 2x ln x +2x.

                                 1
                                        2
                                             2
                           2
                                           1
                                                      2
                                   2
                                                    1
               5.    x(ln x) dx = x (ln x) – x ln x + x .
                                 2         2        4
                                    p+1          p+1         p+1
                                  x            2x          2x
                                            2
                                       (ln x) –      ln x +        if p ≠ –1,
                            2
                      p
               6.    x (ln x) dx =  p +1       (p +1) 2     (p +1) 3
                                      3
                                  1  ln x                          if p = –1.
                                 
                                    3
                                     n
                                 x        k                       n–k

                         n
               7.    (ln x) dx =       (–1) (n +1)n... (n – k + 1)(ln x)  ,  n =1, 2, ...
                               n +1
                                     k=0
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 696
   707   708   709   710   711   712   713   714   715   716   717