Page 717 - Handbook Of Integral Equations
P. 717

p–1   q+1
                                      sin  x cos  x   p – 1    p–2    q+2
                              q
                         p
               63.    sin x cos xdx = –             +        sin  x cos  xdx.
                                           q +1       q +1
                                     sin  x cos  x   q – 1    p+2    q–2
                                        p+1    q–1
                              q
                         p
               64.    sin x cos xdx =              +        sin  x cos  xdx.
                                          p +1       p +1
                 Integrals containing tan x and cot x.

               65.    tan xdx = – ln |cos x|.

                         2
               66.    tan xdx = tan x – x.

                                    2
                         3
               67.    tan xdx =  1  tan x +ln |cos x|.
                                2
                                         n
                                               k     2n–2k+1
                         2n         n       (–1) (tan x)
               68.    tan  xdx =(–1) x –                   ,  n =1, 2, ...
                                               2n – 2k +1
                                        k=1
                                                  n
                                                        k
                                                     (–1) (tan x) 2n–2k+2
               69.    tan 2n+1  xdx =(–1) n+1  ln |cos x| –         ,  n =1, 2, ...
                                                        2n – 2k +2
                                                 k=1
                          dx        1

               70.              =       ax + b ln |a cos x + b sin x| .
                                   2
                       a + b tan x  a + b 2

                         tan xdx      1               a

               71.     √          = √     arccos   1 –  cos x ,  b > a, b >0.
                               2
                        a + b tan x   b – a           b

               72.    cot xdx =ln |sin x|.

                         2
               73.    cot xdx = – cot x – x.

                         3
                                 1
                                     2
               74.    cot xdx = – cot x – ln |sin x|.
                                 2
                                         n
                                               k     2n–2k+1
                                            (–1) (cot x)
                         2n
                                    n
               75.    cot  xdx =(–1) x +                   ,  n =1, 2, ...
                                               2n – 2k +1
                                        k=1
                                                n
                                                      k
                                                   (–1) (cot x) 2n–2k+2
                                     n
               76.    cot 2n+1  xdx =(–1) ln |sin x| +            ,  n =1, 2, ...
                                                      2n – 2k +2
                                                k=1

                          dx        1
               77.              =       ax – b ln |a sin x + b cos x| .
                                   2
                       a + b cot x  a + b 2
               2.7. Integrals Containing Inverse Trigonometric
                      Functions
                           x            x  √

               1.    arcsin  dx = x arcsin  +  a – x .
                                                  2
                                              2
                           a            a

                            x              x                       x
                               2               2      √
                                                             2
                                                         2
               2.     arcsin   dx = x arcsin   – 2x +2 a – x arcsin  .
                            a               a                      a
                            x      1   2   2      x   x
                                                       √
                                                          2
                                                              2
               3.    x arcsin  dx =  (2x – a ) arcsin  +  a – x .
                            a      4              a   4
                             x     x        x  1   2   2
                                     3                   √
                      2
                                                            2
                                                               2
               4.    x arcsin  dx =   arcsin  +  (x +2a ) a – x .
                             a      3       a  9
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 701
   712   713   714   715   716   717   718   719   720   721   722