Page 721 - Handbook Of Integral Equations
P. 721

∞
                           x dx       m+1   (2n – 2m – 3)!! a
                            m                             m–n+1/2
               34.             n+1/2  =2  m!                m+1  ,  a, b >0,
                     0  (a + bx)               (2n – 1)!!  b
                                           1
                     n, m =1, 2, ... ,  m < b – .
                                           2
                      ∞

                           dx      π (2n – 3)!!  1
               35.        2   2 n  =           2n–1  ,  n =1, 2, ...
                     0  (x + a )   2 (2n – 2)!! a
                      ∞
                        (x +1)        1 – a
                              λ–1         –λ
               36.            λ+1  dx =      ,  a >0.
                     0  (x + a)       λ(a – 1)
                      1
                           x λ–1  dx         π
               37.                 λ  =      λ      ,  0 < λ <1, a > –1.
                     0  (1 + ax)(1 – x)  (1 + a) sin(πλ)
                       1   x λ–1/2  dx                              sin[(2λ – 1)k]         √

                                                      Γ 1 – λ cos
               38.            λ     λ  =2π –1/2 Γ λ +  1 2          2λ  k      ,  k = arctan  a;
                     0  (1 + ax) (1 – x)                            (2λ – 1) sin k
                     –  1  < λ <1, a >0.
                       2
                      ∞  x  dx       π
                         a–1
               39.        b    =          ,  0 < a ≤ b.
                     0   x +1    b sin(πa/b)
                      ∞  x   dx       π(a – b)
                          a–1
               40.        b    2  =  2          ,  a <2b.
                     0  (x +1)    b sin[π(a – b)/b]
                      ∞    x    dx      √  √    √   1–2λ Γ(λ – 1/2)
                            λ–1/2
               41.            λ     λ  =  π  a +  b             ,  λ >0.
                     0  (x + a) (x + b)                   Γ(λ)
                      ∞  1 – x             π sin A          πa        πc
                            a
               42.          b  x c–1  dx =           ,  A =    ,  C =   ;  a + c < b,  c >0.
                     0  1 – x         b sin C sin(A + C)     b        b
                           a–1
                      ∞  x   dx
                                    1
                                                1
               43.           2 1–b  = B  1 2  a,1 – b – a ,  1 2  a + b <1,  a >0.
                                    2
                                                2
                     0  (1 + x )
                           2m
                      ∞  x   dx    π(2m – 1)!! (2n – 2m – 3)!!
               44.         2   n  =                  √    ,  a, b >0,  n > m +1.
                                              m n–m–1
                     0  (ax + b)    2(2n – 2)!! a b    ab
                      ∞
                          2m+1
                         x    dx     m!(n – m – 2)!
               45.         2   n  =         m+1 n–m–1  ,  ab >0,  n > m +1 ≥ 1.
                     0  (ax + b)   2(n – 1)!a  b
                      ∞  x   dx      1      µ     µ
                           µ–1
               46.                =      B   , ν –  ,  p >0,  0 < µ < pν.
                              p ν
                        (1 + ax )   pa µ/p  p     p
                     0
                                            n+1
                      ∞ √                 na
                                     n
               47.        x + a – x  dx =      ,  n =2, 3, ...
                               2
                           2
                                           2
                                          n – 1
                     0
                      ∞       dx             n

               48.          √         =   n–1  2   ,  n =2, 3, ...
                                     n
                               2
                     0   x +  x + a 2    a   (n – 1)
                      ∞     √           n              n ⋅ m! a
                                                             n+m+1
                                  2
                              2
               49.      x m  x + a – x  dx =                                ,
                     0                       (n – m – 1)(n – m +1) ... (n + m +1)
                     n, m =1, 2, ... ,  0 ≤ m ≤ n – 2
                      ∞      x dx                        n ⋅ m!
                              m
               50.          √         =                                  n–m–1  ,  n =2, 3, ...
                                     n
                               2
                     0   x +  x + a 2    (n – m – 1)(n – m +1) ... (n + m +1)a
               3.2. Integrals Containing Exponential Functions
                     ∞          1

               1.      e –ax  dx =  ,  a >0.
                    0          a
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 705
   716   717   718   719   720   721   722   723   724   725   726