Page 723 - Handbook Of Integral Equations
P. 723

∞  x  dx      π    2n+1
                         2n
               3.             =         |E 2n |,  a >0.
                    0  cosh ax    2a
                     ∞   x          π (2   – 2)
                          2n         2n  2n
               4.          2   dx =       2n  |B 2n |,  a >0.
                    0  cosh ax        a(2a)
                     ∞  cosh ax        π

               5.             dx =         πa   ,  b > |a|.
                    0  cosh bx     2b cos
                                         2b
                                          2n
                     ∞    cosh ax     π d        1
               6.      x 2n      dx =     2n       1    ,  b > |a|,  n =1, 2, ...
                    0     cosh bx     2b da  cos  2 πa/b
                                                πa      πb

                     ∞
                                            cos     cos
                       cosh ax cosh bx   π      2c       2c
               7.                   dx =                      ,  c > |a| + |b|.
                    0     cosh(cx)       c  cos  πa  + cos  πb
                                                c         c
                     ∞  xdx     π
                                  2
               8.             =    ,  a >0.
                       sinh ax  2a 2
                    0
                                                   √
                     ∞     dx         1      a + b +  a + b 2
                                                      2

               9.                = √       ln      √       ,  ab ≠ 0.
                                      2
                                                      2
                    0  a + b sinh x  a + b 2  a + b –  a + b 2

                      ∞  sinh ax    π      πa
               10.             dx =   tan     ,  b > |a|.
                     0  sinh bx     2b    2b
                      ∞    sinh ax     π d         πa
                                           2n
               11.      x 2n      dx =     2n  tan   ,  b > |a|,  n =1, 2, ...
                     0     sinh bx    2b dx       2b
                      ∞   x          π
                           2n         2n
               12.          2   dx =  2n+1  |B 2n |,  a >0.
                     0  sinh ax     a
               3.4. Integrals Containing Logarithmic Functions
                     1

                           n
                                      n
               1.     x a–1  ln xdx =(–1) n! a –n–1 ,  a >0,  n =1, 2, ...
                    0
                       ln x      π
                      1           2
               2.          dx = –  .
                    0  x +1      12
                      x ln x        n+1  π      (–1)
                      1  n                2   n     k
               3.            dx =(–1)      +       2  ,  n =1, 2, ...
                    0  x +1             12       k
                                             k=1
                      1  x µ–1  ln x  πa µ–1

               4.             dx =         ln a – π cot(πµ) ,  0 < µ <1.
                    0   x + a      sin(πµ)
                      1
                          µ
               5.     |ln x| dx = Γ(µ + 1),  µ > –1.
                    0
                     ∞                      π

               6.      x µ–1  ln(1 + ax) dx =  µ  ,  –1< µ <0.
                    0                   µa sin(πµ)
                     1                    2n
                                       1     (–1) k–1
               7.     x 2n–1  ln(1 + x) dx =       ,  n =1, 2, ...
                    0                  2n      k
                                          k=1
                      1                1         2n+1  (–1) k

               8.     x 2n  ln(1 + x) dx =  ln 4 +        ,  n =0, 1, ...
                    0                2n +1            k
                                                 k=1
                 © 1998 by CRC Press LLC


               © 1998 by CRC Press LLC
                                                                                                             Page 707
   718   719   720   721   722   723   724   725   726   727   728