Page 724 - Handbook Of Integral Equations
P. 724

1                                    n
                                        2ln2   4(–1) n       (–1) k
               9.     x n–1/2  ln(1 + x) dx =  +      π –          ,  n =1, 2, ...
                                        2n +1   2n +1        2k +1
                    0                                     k=0
                      ∞   a + x
                           2   2
               10.      ln  2  2  dx = π(a – b),  a, b >0.
                     0    b + x
                         p–1           2
                      ∞  x  ln x      π cos(πp/q)
               11.           q  dx = –  2  2     ,  0 < p < q.
                     0   1+ x        q sin (πp/q)
                      ∞              1

               12.      e –µx  ln xdx = – (C +ln µ),  µ >0,  C = 0.5772 ...
                                     µ
                     0
               3.5. Integrals Containing Trigonometric Functions
                     π/2
                                   π 1 ⋅ 3 ... (2n – 1)
               1.       cos 2n  xdx =             ,  n =1, 2, ...
                                   2  2 ⋅ 4 ... (2n)
                    0
                      π/2             2 ⋅ 4 ... (2n)
               2.       cos 2n+1  xdx =           ,  n =1, 2, ...
                    0               1 ⋅ 3 ... (2n +1)
                     π/2             m–1
                                        (n – 2k + 1)(n – 2k +3) ... (n – 1)  1
                            n
               3.       x cos xdx = –
                    0                       (n – 2k)(n – 2k +2) ...n  n – 2k
                                     k=0
                     
                      π (2m – 2)!!
                                     if n =2m – 1,
                       2 (2m – 1)!!
                     
                   +    2                             m =1, 2, ...
                      π   (2m – 1)!!
                         ⋅           if n =2m,
                     
                        8    (2m)!!
                                                       n
                      π     dx               π            (2n – 2k – 1)!! (2k – 1)!! a + b    k

               4.               n+1  =        √                                       ,  a > |b|.
                                                 2
                                       n
                    0  (a + b cos x)  2 (a + b) n  a – b 2     (n – k)! k!     a – b
                                                      k=0
                     ∞  cos ax      π

               5.       √    dx =     ,  a >0.
                    0     x         2a
                     ∞
                       cos ax – cos bx

               6.                   dx =ln   ,  ab ≠ 0.
                                            b
                    0        x             a

                     ∞  cos ax – cos bx
                                         1
               7.            2      dx = π(b – a),  a, b ≥ 0.
                                         2
                    0       x
                     ∞

                                      –µ
               8.      x µ–1  cos ax dx = a Γ(µ) cos  1  πµ ,  a >0,  0 < µ <1.
                                                2
                    0
                     ∞
                       cos ax      π  –ab

               9.             dx =  e   ,  a, b >0.
                        2
                       b + x 2    2b
                    0
                                    √
                      ∞
                        cos ax     π 2        ab        ab         ab

               10.       4   4  dx =  3  exp – √   cos √    + sin √    ,  a, b >0.
                     0  b + x       4b         2         2         2
                      ∞   cos ax      π

               11.        2   2 2  dx =  3  (1 + ab)e –ab ,  a, b >0.
                     0  (b + x )     4b

                      ∞    cos ax dx     π be   – ce
                                             –ac   –ab
               12.        2   2  2   2  =              ,  a, b, c >0.
                                               2
                     0  (b + x )(c + x )   2bc b – c 2
                      ∞

                              2     1    π
               13.      cos ax  dx =       ,  a >0.
                     0              2   2a
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 708
   719   720   721   722   723   724   725   726   727   728   729