Page 722 - Handbook Of Integral Equations
P. 722

1                     n
                                  n!         n!   1
                       n –ax
               2.     x e   dx =     – e –a          ,  a >0, n =1, 2, ...
                                 a n+1       k! a n–k+1
                    0                     k=0
                     ∞             n!

                        n –ax
               3.      x e   dx =     ,  a >0, n =1, 2, ...
                                  a n+1
                    0
                     ∞
                       e          π
                        –ax
               4.       √  dx =     ,  a >0.
                    0    x        a
                     ∞             Γ(ν)

                          e
               5.      x ν–1 –µx  dx =  ν  ,  µ, ν >0.
                    0               µ
                     ∞   dx     ln 2

               6.          ax  =   .
                    0  1+ e      a
                     ∞                       2n
                       x    dx      n–1  2π   B 2n
                        2n–1
               7.        px    =(–1)              ,  n =1, 2, ...  (B m are the Bernoulli numbers).
                    0   e  – 1           p    4n
                     ∞                         2n |B 2n |
                       x    dx       1–2n  2π
                        2n–1
               8.              =(1 – 2  )            ,  n =1, 2, ...
                        e px  +1           p     4n
                    0
                     ∞  e  dx        π
                        –px
               9.              =          ,  q > p >0 or 0> p > q.
                       1+ e –qx  q sin(πp/q)
                    –∞
                      ∞
                         ax   –ax
                        e  + e            π
               10.       bx   –bx  dx =       πa    ,  b > a.
                     0  e  + e        2b cos
                                             2b
                      ∞
                        e   – e         π      πp
                         –px   –qx
               11.          –(p+q)x  dx =  cot     ,  p, q >0.
                     0  1 – e          p + q  p + q
                      ∞

                            –βx ν –µx     1   µ

               12.      1 – e    e   dx =  B    , ν +1 .
                     0                    β   β

                      ∞               1  π

                               2
               13.      exp –ax  dx =      ,  a >0.
                     0                2  a
                      ∞                     n!

               14.      x 2n+1  exp –ax 2  dx =  n+1  ,  a >0,  n =1, 2, ...
                     0                    2a
                                                      √
                      ∞                  1 ⋅ 3 ... (2n – 1) π

               15.      x 2n  exp –ax 2  dx =            ,  a >0,  n =1, 2, ...
                                                a
                                            2 n+1 n+1/2
                     0
                                           √
                      ∞                      π       b 2

                              2 2
               16.      exp –a x ± bx dx =  |a|  exp  2  .
                     –∞                            4a
                      ∞            b       1  π       √

                               2
               17.      exp –ax –     dx =       exp –2 ab ,  a, b >0.
                                  x 2      2  a
                     0
                      ∞

                              a      1   1
               18.      exp –x  dx =  Γ     ,  a >0.
                                     a   a
                     0
               3.3. Integrals Containing Hyperbolic Functions
                     ∞
                         dx      π

               1.             =  2|a|  .
                    0  cosh ax
                                                   √
                                         2           b – a
                                                    2   2
                                   
                                    √       arctan            if |b| > |a|,
                     ∞     dx          2   2       a + b

               2.                 =    b – a          √
                                                        2
                    0  a + b cosh x     1      a + b +  a – b 2
                                            ln                if |b| < |a|.
                                    √               √
                                                        2
                                        2
                                       a – b 2  a + b –  a + b 2
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 706
   717   718   719   720   721   722   723   724   725   726   727