Page 720 - Handbook Of Integral Equations
P. 720

a
                       1  x dx    πa
               14.           a  =      ,  –1< a <1.
                     0  (1 – x)  sin(πa)
                       1                       Γ(p)Γ(q)
               15.     x p–1 (1 – x) q–1  dx ≡ B(p, q)=  ,  p, q >0.
                     0                         Γ(p + q)
                      1
                                             π
                               q –p/q
               16.     x p–1 (1 – x )  dx =       ,  q > p >0.
                     0                   q sin(πp/q)
                      1
                                              πp
                                 q –p/q
               17.     x p+q–1 (1 – x )  dx =  2     ,  q > p.
                     0                     q sin(πp/q)
                       1                      π
                                 q –1/p
               18.     x q/p–1 (1 – x )  dx =      ,  p >1, q >0.
                     0                     q sin(π/p)
                       1  x p–1  – x –p
               19.              dx = π cot(πp),  |p| <1.
                     0   1 – x
                       1  x p–1  – x –p  π
               20.              dx =       ,  |p| <1.
                     0   1+ x        sin(πp)
                      1
                        p
                       x – x –p    1
               21.             dx =  – π cot(πp),  |p| <1.
                         x – 1     p
                     0
                        p
                       1  x – x –p  1    π
               22.             dx =  –       ,  |p| <1.
                     0   1+ x      p   sin(πp)
                       1  x 1+p  – x 1–p  π     πp     1
               23.           2   dx =   cot     –  ,  |p| <1.
                     0   1 – x        2     2     p
                       x   – x        1      π
                       1  1+p  1–p
               24.               dx =  –           ,  |p| <1.
                         1+ x 2       p  2 sin(πp/2)
                     0
                      ∞  x  – x
                         p–1   q–1
               25.                dx = π[cot(πp) – cot(πq)],  p, q >0.
                     0     1 – x
                      1
                              dx         2
               26.     	               =   arctan a.
                              2
                     0   (1 + a x)(1 – x)  a
                      1
                              dx         1   1+ a
               27.     	               =   ln    .
                              2
                     0   (1 – a x)(1 – x)  a  1 – a
                       1    dx           π
               28.           √      = √      ,  1 < a.
                                         2
                     –1 (a – x) 1 – x 2  a – 1
                         n
                       1  x dx   2(2n)!!
               29.     √      =         ,  n =1, 2, ...
                     0   1 – x  (2n + 1)!!
                       1  x n–1/2  dx  π (2n – 1)!!
               30.      √       =           ,  n =1, 2, ...
                     0    1 – x     (2n)!!
                        x  dx    π 1 ⋅ 3 ... (2n – 1)
                       1  2n
               31.     √       =                ,  n =1, 2, ...
                     0   1 – x 2  2  2 ⋅ 4 ... (2n)
                      1
                       x 2n+1  dx  2 ⋅ 4 ... (2n)
               32.      √      =              ,  n =1, 2, ...
                     0   1 – x 2  1 ⋅ 3 ... (2n +1)
                      ∞
                           λ–1               n
                          x   dx       n  πC λ–1
               33.             n+1  =(–1)  λ     ,  0 < λ < n +1.
                     0  (1 + ax)         a sin(πλ)
                 © 1998 by CRC Press LLC






               © 1998 by CRC Press LLC
                                                                                                             Page 704
   715   716   717   718   719   720   721   722   723   724   725