Page 716 - Handbook Of Integral Equations
P. 716

√
                                                      2  2
                                         1            a – b tan x
                                                                      2   2
                                    √         arctan               if a > b ,
                                   
                           dx        a a – b 2           a
                                          2

               45.                =                √
                               2
                           2
                        2
                       a – b sin x       1          2  2
                                                   b – a tan x + a    2   2
                                       √       ln √                if b > a .

                                   
                                          2
                                                         2
                                      2a b – a 2     b – a tan x – a
                                                     2

                         sin xdx      1       k cos x
               46.     √           = –  arcsin √    .
                                2
                            2
                        1+ k sin x    k        1+ k  2
                                                 √
                         sin xdx      1
                                                       2
               47.     √           = –  ln k cos x +  1 – k sin x .
                                                           2

                            2
                                2
                        1 – k sin x   k
                          √                 cos x  √          1+ k        k cos x
                                                                  2
                                                      2
                                    2
                                2
                                                          2
               48.    sin x 1+ k sin xdx = –      1+ k sin x –      arcsin √    .
                                             2                  2k         1+ k 2
                                                                  2
                          √                 cos x  √          1 – k          √
                                                      2
                                                         2
                                   2
                                                                                   2
                                2
               49.    sin x 1 – k sin xdx = –     1 – k sin x –    ln k cos x +  1 – k sin x .

                                                                                      2
                                             2                 2k

                                         a            b
               50.    e ax  sin bx dx = e ax  sin bx –    cos bx .
                                                     2
                                       a + b 2      a + b 2
                                        2
                                    e ax                     2
                            2
                                             2
               51.    e ax  sin xdx =    a sin x – 2 sin x cos x +  .
                                    2
                                   a +4                      a
                                   e  sin   x                n(n – 1)   ax   n–2
                                    ax   n–1
                       ax
                            n
               52.    e  sin xdx =           (a sin x – n cos x)+      e  sin  xdx.
                                                               2
                                     a + n 2                  a + n 2
                                      2
                 Integrals containing sin x and cos x.

                                      cos[(a + b)x]  cos (a – b)x

               53.    sin ax cos bx dx = –        –           ,  a ≠ ±b.
                                         2(a + b)     2(a – b)
                              dx            1         c

               54.                       =     arctan  tan ax .
                                     2
                                 2
                       2
                           2
                       b cos ax + c sin ax  abc      b

                              dx            1
               55.                       =         c tan ax + b    .
                                 2
                       2
                           2
                                     2
                       b cos ax – c sin ax  2abc  ln   c tan ax – b
                                     n+m–1
                            dx              k    tan     x
                                                   2k–2m+1
               56.                  =     C n+m–1          ,  n, m =1, 2, ...
                       cos 2n  x sin 2m  x       2k – 2m +1
                                      k=0
                                                      n+m
                             dx           m                k   tan    x
                                                                 2k–2m
               57.                     = C n+m  ln |tan x| +  C n+m    ,  n, m =1, 2, ...
                       cos 2n+1  x sin 2m+1  x                 2k – 2m
                                                      k=0
                 Reduction formulas. The parameters p and q below can assume any values, except for those at
               which the denominators on the right-hand side vanish.
                                      sin p–1  x cos q+1  x  p – 1
                         p
                              q
                                                                      q
               58.    sin x cos xdx = –             +        sin p–2  x cos xdx.
                                           p + q      p + q
                                     sin  x cos  x   q – 1    p     q–2
                                        p+1    q–1
                         p
                              q
               59.    sin x cos xdx =              +        sin x cos  xdx.
                                          p + q      p + q
                                        p–1   q–1
                         p    q      sin  x cos  x    2     q – 1
               60.    sin x cos xdx =               sin x –
                                          p + q            p + q – 2
                        (p – 1)(q – 1)     p–2   q–2
                     +                 sin  x cos  xdx.
                       (p + q)(p + q – 2)
                                     sin p+1  x cos q+1  x  p + q +2
                              q
                         p
                                                                        q
               61.    sin x cos xdx =              +           sin p+2  x cos xdx.
                                          p +1         p +1
                                      sin  x cos  x   p + q +2    p     q+2
                                         p+1    q+1
                              q
                         p
               62.    sin x cos xdx = –             +           sin x cos  xdx.
                                           q +1         q +1
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 700
   711   712   713   714   715   716   717   718   719   720   721