Page 713 - Handbook Of Integral Equations
P. 713

q
                                    q
               8.    (ln x) dx = x(ln x) – q  (ln x) q–1  dx, q ≠ –1.
                                        m
                                   x  n+1    (–1) k
                      n
                            m
               9.    x (ln x) dx =                 (m +1)m... (m – k + 1)(ln x) m–k , n, m =1, 2, ...
                                  m +1     (n +1) k+1
                                        k=0
                                    1   p+1    q   q      p    q–1

                       p
                             q
               10.    x (ln x) dx =    x  (ln x) –       x (ln x)  dx,  p, q ≠ –1.
                                   p +1           p +1
                                   1

               11.    ln(a + bx) dx =  (ax + b) ln(ax + b) – x.
                                   b
                                             2                2
                                     1   2  a             1  x    a
               12.    x ln(a + bx) dx =  x –    ln(a + bx) –    –  x .
                                     2      b 2           2  2    b
                                     1   3  a              1  x   ax    a x
                                              3                3     2   2
                       2
               13.    x ln(a + bx) dx =  x –    ln(a + bx) –     –    +      .
                                     3       b 3           3  3    2b    b 2

                       ln xdx       ln x    1     x
               14.             = –        +   ln      .
                       (a + bx) 2  b(a + bx)  ab  a + bx

                       ln xdx        ln x         1        1      x
               15.             = –         +           +      ln     .
                                                           2
                       (a + bx) 3  2b(a + bx) 2  2ab(a + bx)  2a b  a + bx
                                                          √
                                                                  √
                                 2         √        √      a + bx +  a
                                    (ln x – 2) a + bx +  a ln √   √      if a >0,
                                
                       ln xdx     b                        a + bx –  a
               16.     √      =                                √
                        a + bx   2         √         √          a + bx
                                
                                     (ln x – 2) a + bx +2 –a arctan  √    if a <0.
                                
                                
                                  b                               –a

                                        2
                          2
                             2
                                            2
               17.    ln(x + a ) dx = x ln(x + a ) – 2x +2a arctan(x/a).

                                             2
                                         2
                                                  2
                                                          2
                                                      2
                               2
                           2

               18.    x ln(x + a ) dx =  1    (x + a ) ln(x + a ) – x .
                                     2

                                                  2
                                              2
                                                     2
                                                       3
                                                                  3
                            2
                                2
                                         3
                       2
                                                            2

               19.    x ln(x + a ) dx =  1    x ln(x + a ) – x +2a x – 2a arctan(x/a) .
                                      3              3
               2.6. Integrals Containing Trigonometric Functions
                 Integrals containing cos x. Notation: n =1, 2, ...
                                   1

               1.    cos(a + bx) dx =  sin(a + bx).
                                   b

               2.    x cos xdx = cos x + x sin x.

                                           2
                      2
               3.    x cos xdx =2x cos x +(x – 2) sin x.
                                        n                    n–1
                                                x 2n–2k               x 2n–2k–1
               4.    x 2n  cos xdx =(2n)!  (–1) k      sin x +  (–1) k          cos x .
                                              (2n – 2k)!            (2n – 2k – 1)!
                                       k=0                   k=0
                                           n          2n–2k+1           2n–2k
                                                  k  x                x
                      2n+1
               5.    x    cos xdx =(2n + 1)!  (–1)             sin x +        cos x .
                                                   (2n – 2k + 1)!    (2n – 2k)!
                                           k=0

                                  p
                      p
               6.    x cos xdx = x sin x + px p–1  cos x – p(p – 1)  x p–2  cos xdx.

                        2
                               1
               7.    cos xdx = x +  1  sin 2x.
                               2    4
                 © 1998 by CRC Press LLC
               © 1998 by CRC Press LLC
                                                                                                             Page 697
   708   709   710   711   712   713   714   715   716   717   718